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A B S T R A C T

In everyday life the impact of light on the motion of mechanical
objects is negligible. However, modern experiments making use
of high quality optical resonators are able to observe significant
effects originating from the forces associated with photons on small
mechanical systems. The common feature of these systems is the
dependence of the optical resonance frequency on the position
of the mechanical object, laying the framework of optomechanics.
Many interesting regimes have been explored which allow for
photon-light entanglement, laser cooling of motion, generation of
squeezed states of light, and even the detection of gravitational
waves. Interestingly, the optomechanical interaction is so generic
that its underlying concepts and derived insights can be generally
applied to a large variety of systems, as we will see in this thesis.

In Chapter 1, we provide a brief overview of key concepts and
results from the field of optomechanics, before going on to discuss
the novel regimes and applications that we have identified and
proposed.

In Chapter 2, we theoretically investigate results from a couple
of experiments, that were previously not well-understood. These
experiments trap dielectric nano-particles through an optical res-
onator mode and observe that the intensities experienced by the
particles are strongly reduced compared to a conventional optical
tweezer trap. We find that these systems can be fully described
by a simple optomechanical toy model and derive that the optical
potential inside resonators can approach a nearly perfect square
well. This potential can be dynamically reshaped by changing the
driving laser frequency and we find a dramatic reduction of intensi-
ties seen by the trapped particle, which could significantly increase
the range of systems to which optical trapping can be applied.
These results are quite remarkable and should have important
implications for future trapping technologies.

In Chapter 3, we recognize that a major trend within the field
of cavity QED is to attain the strong coupling regime. Additional
rich dynamics can occur by considering the atomic motional de-
gree of freedom. In particular, we show that such a system is a
natural candidate to explore the single-photon optomechanical
strong coupling regime of quantum optomechanics, but where the
motional frequency cannot be resolved by the cavity. We show that
this regime can result in a number of remarkable phenomena, such
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as strong entanglement between the atomic wave-function and the
scattering properties of single incident photons, or an anomalous
heating mechanism of atomic motion.

In Chapter 4 we show that an atom trapped in and coupled
to a cavity constitutes an attractive platform for realizing the op-
tomechanical single-photon strong coupling regime with resolved
mechanical sidebands. Realizing this regime is a major goal within
the field of optomechanics, as it would enable the deterministic
generation of non-classical states of light. However, this regime
is difficult to achieve with conventional mechanical systems due
to their small zero-point motions. As an example, we show that
optomechanically-induced photon blockade can be realized in re-
alistic setups, wherein non-classical light is generated due to the
interaction of photons with the atomic motion alone.

R E S U M E N

En la vida cotidiana, el impacto de la luz sobre el movimiento de
los objetos mecánicos es insignificante. Sin embargo, los experimen-
tos modernos que usan resonadores ópticos de alta calidad son
capaces de observar efectos significativos que se originan de las
fuerzas asociadas con los fotones en pequeños sistemas mecánicos.
La característica común de estos sistemas es la dependencia de la
frecuencia de resonancia óptica en la posición del objeto mecáni-
co, que establece el campo de la optomecánica. Se han explorado
muchos regímenes interesantes que permiten el entrelazamiento
de fotones, el enfriamiento del movimiento por láser, la generación
de estados de luz comprimidos e incluso la detección de ondas
gravitacionales. Curiosamente, la interacción optomecánica es tan
genérica que sus conceptos subyacentes y sus profundas conse-
cuencias pueden aplicarse generalmente a una gran variedad de
sistemas, como veremos en esta tesis.

En el Capítulo 1, proporcionamos una breve descripción de los
principales conceptos y resultados del campo de la optomecánica,
antes de pasar a analizar los nuevos regímenes y aplicaciones que
hemos identificado y propuesto.

En el Capítulo 2, investigamos teóricamente los resultados de
un par de experimentos que antes no se entendían bien. Estos
experimentos atrapan nanopartículas dieléctricas a través de un
modo de un resonador óptico y observan que las intensidades
experimentadas por las partículas se reducen considerablemente
en comparación con una trampa de pinzas ópticas convencional.
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Encontramos que estos sistemas se pueden describir completa-
mente mediante un modelo optomecánico de juguete simple y
demostramos que el potencial óptico dentro de los resonadores
puede aproximarse a un pozo cuadrado casi perfecto. Este poten-
cial se puede modificar dinámicamente cambiando la frecuencia de
entrada del láser y encontramos una reducción drástica de las in-
tensidades vistas por la partícula atrapada, lo que podría aumentar
significativamente el rango de sistemas a los que se puede aplicar
el atrapamiento óptico. Estos resultados son bastante notables y de-
berían tener implicaciones importantes para las futuras tecnologías
de atrapamiento.

En el Capítulo 3, reconocemos que una tendencia importante
en el campo de la electrodinámica cuántica de cavidades (del in-
glés, çavity QED") es lograr un régimen de acoplamiento fuerte.
Se pueden producir dinámicas adicionales al considerar el grado
de libertad de movimiento atómico. En particular, mostramos que
dicho sistema es un candidato natural para explorar el régimen de
acoplamiento fuerte optomecánico de un único fotón en optomecá-
nica cuántica, pero donde la frecuencia de movimiento no puede
ser resuelta por la cavidad. Mostramos que este régimen puede dar
lugar a una serie de fenómenos notables, como un fuerte entrela-
zamiento entre la función de onda atómica y las propiedades de
dispersión de los fotones incidentes individuales, o un mecanismo
de calentamiento anómalo del movimiento atómico.

En el Capítulo 4 mostramos que un átomo atrapado y acoplado
a una cavidad constituye una plataforma atractiva para obtener el
régimen de acoplamiento fuerte optomecánico con un único fotón
y con bandas laterales mecánicas resueltas. La obtención de este
régimen es un objetivo principal en el campo de la optomecánica,
ya que permitiría la generación determinista de estados de luz
no clásicos. Sin embargo, este régimen es difícil de lograr con
los sistemas mecánicos convencionales debido a sus pequeños
movimientos de punto cero. Como ejemplo, mostramos que el
bloqueo de fotones inducido de forma mecánica puede realizarse
en configuraciones realistas, donde la luz no clásica se genera
solamente debido a la interacción de fotones con el movimiento
atómico.
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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 forces of light

A photon walks into a hotel and the receptionist asks "Hi! Can
we help you with your luggage?" And the photon responds: "No
thanks, I am traveling light!"

So what can we learn from this joke? Particles of light are called
photons, which we can count. Other than being countable they
also change the velocity of things they hit. The force arising from
continuous hitting is known as the radiation pressure force [1].
Due to the large mass of macroscopic mechanical objects, the effect
of this force applied by single photons is incredibly weak. As an
example, when a single photon reflects off a smartphone at rest,
the velocity of that smartphone after the interaction is about one
atom-size per age of the universe. However, if we reflect a photon
on a single atom at rest, the atom has a velocity of roughly one
smartphone length per second, which is a decent effect at the
single photon level and something to keep in mind. Optical forces
have many applications ranging from physics to life sciences. For
example they are exploited for solar sails [2], for cooling atoms
[3] and for optical tweezers that can trap and move small particles
around [4].

The effects of optical forces are most easily seen with large laser
intensities, due to the small effect that a single photon typically has.
One way to increase the effect of optical forces, without increasing
the incident intensity, is to utilize an optical resonator (cavity). An
example of an optical cavity with length L is shown in Figure 1.1a).
We assume that the cavity is driven by a coherent laser drive with
frequency ωL and number flux E20 through the left mirror. The
cavity supports optical modes with frequencies ωc = 2πc/λ with
possible wavevelength obeying m · λ/2 = L, m being any positive
integer number. For most setups it is sufficient to only consider a
single optical mode, that for which the frequency ωc is closest to
the laser frequency. Here, for simplicity we assume equal mirrors
with a decay rate of κ/2 each, and ignore intrinsic losses. Resonant
photons (ωL = ωc) bounce back and forth between the mirrors
many times before they decay with rate κ. Thus, the number of
resonant photons inside the cavity is proportional to nc ∝ E20/κ,
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4 introduction

Figure 1.1: a) Illustration of an optical cavity with length L creating a
standing wave optical mode with wavelength λ corresponding
to a resonance frequency ωc = 2πc/λ. The cavity consists
of two equal mirrors each having a decay rate of κ/2 and is
coherently driven with a laser of frequency ωL through the
left mirror.
b) The number of photons nc inside the cavity (qualitatively)
as a function of laser frequency ωL forms a Lorentzian cen-
tered around the cavity frequency (ωL = ωc) with width κ
and a maximum value of nc ∝ 1/κ.

as shown in Fig. 1.1b), where we plot the number of intra-cavity
photons nc as a function of laser frequency. It becomes obvious that
good mirrors (small κ) can lead to a huge build up of light intensity
inside the cavity. This allows enhanced optical forces Fopt ∝ nc
on objects trapped inside the cavity (and on the cavity mirrors
themselves).

The idea of using cavities to enhance optical forces (or many
other effects involving light) is quite old. However, in the past ten
years, the field of “optomechanics” has seen explosive growth. At
a broad level, this field aims to observe and exploit interesting
dynamical effects that can occur, when optical cavity forces and
the motion they induce modify the properties of the cavity itself. A
simple model where such effects can be understood is illustrated
in Fig. 1.2a), where now one of the cavity mirrors is mounted on a
spring and allowed to move.

For an empty cavity, the mirror has an equilibrium position x0
and the cavity a length L determining its resonance frequency
ωc(x0). In Fig. 1.2b) we turn on an external laser drive populating
the cavity with photons. For large nc, the balance of optical forces
and the restoring force of the spring results in a new equilibrium
position x̄0, which increases the length of the cavity and results
in a lower resonance frequency ωc(x̄0). This enables an interest-
ing dynamic: The resonance frequency of the cavity depends on
the position of the mirror, the position of the mirror depends on
the number of photons inside the cavity and the number of pho-
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Figure 1.2: Illustration of the standard optomechanical setup.
a) An empty cavity with length L, where the right mirror is
attached to a spring representing a vibrational mode. The
cavity frequency ωc(x0) depends on its equilibrium position
x0.
b) A coherently driven cavity. The radiation pressure force on
the mirrors is proportional to the number of photons nc inside
the cavity. Thus, many photons inside the cavity push the right
mirror to a new equilibrium position x̄0, which increases the
cavity length > L and as a consequence reduces its resonance
frequency to ωc(x̄0).

tons depends again on the resonance frequency of the cavity. The
dynamics arising from this interplay can give rise to remarkable
effects. Perhaps most notably, it enables an incoming laser to extract
energy from a motional degree of freedom, thereby reducing its
effective temperature [5, 6].

It turns out that a simple and “standard” physical model un-
derlying the system illustrated in Fig. 1.2 can equally apply to a
broad class of systems that contain coupled optical and mechan-
ical resonances. This provides a large number of ways in which
optomechanical effects can be observed and exploited (see Sec. 1.2).
At the same time, in all systems explored thus far, a single photon
still has a very weak optomechanical effect, which necessitates that
a large number of photons are sent in. Within this context, the
broad questions this thesis aims to answer can be summarized in
two bullet points:

• Can one, inspired by the concepts of optomechanics, find new
applications or identify new phenomena in systems, which
go beyond the “standard” optomechanical model?

• Can we find new systems, where the interaction between
individual photons and motion becomes very strong, creating
a new playground to explore optomechanical phenomena in
the quantum regime?
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Before we answer these questions in Chapters 2-4, we will provide
a basic introduction into the theory of cavity optomechanics.

1.2 standard regimes of optomechanics

Here, we will introduce the standard regimes of optomechanics,
which have been both theoretically analyzed and experimentally
observed. As hinted by Fig. 1.2, a minimal model of optomechanical
interactions involves a single optical and mechanical degree of
freedom, and where the optical resonance depends on the position
of the mechanical system. A corresponding Hamiltonian thus reads
[7]:

Hom = ωmb
†b+ωc(x)a

†a. (1.1)

We use a and b as the annihilation operators for photons and
phonons in the optical and mechanical modes, respectively, and
ωm is the frequency of the mechanical mode. For simplicity we ne-
glect mechanical damping. ωc(x) describes the position-dependent
cavity resonance frequency. Formally, we can expand the resonance
frequency in powers of the displacement around some equilibrium
position x0,

ωc(x) = ωc(x0) +ω
′
c(x0)(x− x0) + .... (1.2)

Given the naturally weak force associated with light, the coupled
mechanical degree of freedom is displaced by these forces by typ-
ically infinitesimal distances. This motivates expanding the reso-
nance frequency of the cavity only up to linear displacements in
Eq. (1.2) which defines the optomechanical interaction as given by

HI = ω
′
c(x0)(x− x0)a

†a = gm(b+ b†)a†a. (1.3)

Here, we have re-written the displacement in terms of the funda-
mental creation and annihilation operators, x− x0 = xzp(b

† + b),
where xzp =

√
 h/(2mωm) is the quantum mechanical uncertainty

associated with motion, which decreases with the effective mass
m of the mirror. The single-photon, single-phonon optomechanical
coupling strength is defined by

gm ≡ ω ′c(x0)xzp. (1.4)

Even though we have linearized the displacement of the mechanical
motion, the optomechanical interaction Eq. (1.3) still gives rise to
non-linear equations of motion due to the product of three opera-
tors in the Hamiltonian. Without losses and thermal effects, starting
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from a classical (e.g., coherent) state, the interaction could eventu-
ally cause the state to become non-classical. This is interesting for
a number of reasons; for example, it might be that optomechanical
systems could be used to generate and manipulate non-classical
states of light for quantum information processing. However, as the
best demonstrated ratio of coupling strength to cavity linewidth
thus far is gm/κ ∼ 10−2 [8, 9], such quantum effects are too small
to be observed.

To intuitively motivate the optomechanical Hamiltonian (1.1)
we considered the simple picture of a moving mirror attached to
a spring. Real optomechanical setups seldom look that way as
the optomechanical description of a position-dependent optical
resonance frequency is quite generic and successfully models a
wide range of different systems. Examples of recently developed
optomechanical geometries are shown in Fig. 1.3, with mechanical
frequencies ranging from Hz to GHz, and masses ranging from
kilograms to sub-picograms. The largest optomechanical structure
and also the most sensitive to mechanical displacement to date is
the gravitational wave detector (LIGO), which can resolve a change
in length of less than 1/10000 the size of a proton. The length of its
interferometer arms (4km) is affected by distortions of space itself.
Other (a bit smaller) approaches to include a mechanical degree
of freedom are gram-scale mirrors, which are optically trapped at
mechanical frequencies of ωm ∼ 2π× 200Hz [10] and coating of
cantilevers [11–13] which constitute movable cavity mirrors. Op-
tomechanical dynamics can also be achieved by placing membranes
[14] inside a cavity mode. The resonances of whispering gallery
mode micro-cavities [15, 16] can be affected by the elastic deforma-
tions of the dielectric structure itself, whereas in superconducting
microwave resonators the capacitive coupling of a nanomechanical
beam gives rise to the optomechanical interaction [17]. The smallest
optomechanical systems are photonic crystal cavities where sus-
pended membranes function as a mechanical oscillator [18] and
photonic crystal nanobeam cavities, where the deformations of the
beam itself supports vibrational frequencies in the GHz range [5]
by having an effective mass of a fraction of a picogram.

While most systems rely on the deformation or displacement
of resonator boundaries in order to achieve a position dependent
resonance frequency, the trapping of nano-spheres inside a cavity
mode constitutes an optomechanical platform as well [19–24].

As mentioned, all those experiments remain in the so-called op-
tomechanical weak coupling regime, gm � κ, where many photons
inside the optical mode are required to see an appreciable effect on
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the vibrational mode. In the following we will demonstrate how to
model this regime and give some intuition about its consequences.

1.2.1 Weak optomechanical coupling

Since gm � κ, a large incident field must be sent in to drive
the system. This enables one to develop a linearized theory of
quantum fluctuations around the classical steady-state solution.
The optomechanical Hamiltonian including a coherent laser drive
and written in a frame rotating with laser frequency ωL is given
by

Ho = −δca
†a+ωmb

†b+gm(b†+b)a†a+
√
κexE0(a

†+a). (1.5)

Here, δc = ωL −ωc(x0) is the detuning of the laser from the
cavity frequency and κex denotes the decay rate of the cavity into
some particular external channel, which also serves as the source
of injection of photons. With the standard Heisenberg-Langevin
equations [26], one can find the steady-state equilibrium position x̄0
and the steady-state expectation value of the amplitude 〈a〉 = ᾱ for
this Hamiltonian. The optomechanical interaction can be linearized
by splitting the optical mode into this steady-state solution and
quantum fluctuations δa around it:

a = ᾱ+ δa. (1.6)

The effect of the laser drive is then absorbed into the steady state
solution ᾱ ∝ E0 and the last term of Eq. 1.5 can be omitted. The
interaction Hamiltonian turns into

HI = gm(ᾱ∗ + δa†)(ᾱ+ δa)(b† + b). (1.7)

The first term gm|ᾱ|2(b+ b†) just describes an average radiation
pressure force. Intuitively, such a constant force pushing on the
mirror just results in a new equilibrium position x̄0, and a corre-
sponding static shift in the cavity resonance frequency ωc(x̄0). We
also omit the term proportional to δa†δa as it is smaller by a factor
of ᾱ than the term we are interested in. Then, we end up with
the “standard model” of (linearized) optomechanical interactions,
which describes essentially every optomechanical experiment to
date:

HL ≈ gm
√
n̄c(δa

† + δa)(b† + b). (1.8)

Here, n̄c = |ᾱ|2 is the mean intra-cavity photon number.
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Figure 1.3: Examples of recent optomechanical systems
(Top to Bottom) Gravitational wave detectors [photo credit
LIGO Laboratory], harmonically suspended gramscale mirrors
[10], coated atomic force microscopy cantilevers [11], coated
micromirrors [12, 13], SiN3 membranes dispersively coupled
to an optical cavity [14], optical microcavities [15, 16], super-
conducting microwave resonators coupled to a nanomechan-
ical beam [17], suspended membranes in photonic crystal
cavities [18] and SI nanobeam cavities [5]. Parts of the figure
and caption are taken from a review on optomechanics [25].
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To get some intuition, we note that HL enables a process where
a photon is created (δa†), along with the creation or annihilation
of a phonon. If the photon exits the cavity (due to the finite cavity
losses κ), then this cycle has resulted in the heating or cooling of
the mechanical energy, with the energy difference carried away by
the outgoing photon (so-called Stokes or anti-Stokes sidebands). In
particular, when ωm > κ (sideband resolved) , one can use the nar-
row optical resonance to significantly enhance the cooling process
over heating, by choosing the laser frequency ωL ≈ ωc(x0) −ωm
to be red detuned. This in principle provides a route to cool the
mechanical motion to its quantum ground state.

For ωm < κ (unresolved sidebands) the adiabatic response of
the cavity field to the motion gives rise to the optical spring effect,
where the vibrational frequency can be optically enhanced (spring)
or reduced (anti-spring). All these effects can be completely under-
stood from a classical perspective. Therefore we will now derive
the classical (and linear) response of the optomechnical system,
which is also called the susceptibility.

1.2.2 Linear response: susceptibility

Many interesting effects arising from cavity optomechanics can
be explained classically. When the equations of motions can be
linearized, the expectation values of the quantum Heisenberg-
Langevin equations coincide with the classical observables. The
linear response of a mechanical system to an external drive with
frequency ω gives information about its resonance frequencies and
damping or amplification rates. The total linearized Hamiltonian
of the optomechanical system, written in a frame rotating with an
external laser frequency ωL is given by

HLO =
p2

2m
+
1

2
mω2m(x− x̄0)

2− δ̄ca
†a+(g/xzp)(a

†+a)x−xFext(t).

(1.9)

The first term describes the kinetic energy of the mechanical motion
with momentum p. Here, δ̄c = ωL −ωc(x̄0) is the detuning of the
laser from the steady state cavity frequency. For simplicity we
choose x̄0 = 0 and changed the notation from δa to a. We define
the intra-cavity field enhanced optomechanical coupling strength
g = gm

√
n̄c. We added an external driving force Fext(t) shaking the

mechanical system with frequency ω. The system dynamics under
this Hamiltonian is described by standard Heisenberg-Langevin
equations [26]. After taking the classical expectations values for the



1.2 standard regimes of optomechanics 11

position x = 〈x(t)〉 and the cavity amplitude fluctuations α = 〈a〉,
the equations of motion are given by:

mẍ = −mω2mx−mΓmẋ+ (g/xzp)(α
∗ +α) + Fext(t) (1.10)

α̇ = (iδ̄c −
κ

2
)α+ i(g/xzp)x. (1.11)

In addition to the unitary dynamics under HLO, we have added the
cavity decay rate κ and a mechanical damping rate Γm. These are
linear coupled equations, which can be straightforwardly solved for
x(ω) in frequency space, where we replace all variables v(t) with
their Fourier transforms v(t) =

∫
dωe−iωtv(ω). The susceptibility

χ(ω) is then defined as the ratio between the motional amplitude
and the external force, x(ω) ≡ χ(ω)Fext(ω). It is given by

χ(ω) =
1

m(ω2m −ω2 − iΓmω) + Σ(ω)
. (1.12)

All effects originating from the optomechanical interaction are
contained in

Σ(ω) =
g2

x2zp

(
1

(δ̄c +ω) + iκ/2
+

1

(δ̄c −ω) − iκ/2

)
(1.13)

which could be called the “optomechanical self-energy” [27] sum-
marizing the effects of the optomechanical interaction.

1.2.3 The optical spring effect and cooling/heating

For Γm � g� κ, all dynamics take place in the vicinity ofω ≈ ωm
and we can approximate ω2m −ω2 ≈ 2ωm(ωm −ω) and evaluate
Σ(ωm) at the bare mechanical frequency. Then the susceptibility
(Eq. 1.12) takes a Lorentzian shape:

χ(ω) =
1

2mωm

1

(ωm + δωopt) −ω− i(Γm + Γopt)/2
. (1.14)

Thus, we are able to identify the optomechanically induced damp-
ing rate Γopt = −Im[Σ(ωm)]/(mωm) and mechanical frequency
shift δωopt = Re[Σ(ωm)]/(2mωm):

Γopt = g
2

(
κ

(δ̄c +ωm)2 + κ2/4
−

κ

(δ̄c −ωm)2 + κ2/4

)
(1.15)

δωopt = g
2

(
δ̄c +ωm

(δ̄c +ωm)2 + κ2/4
+

δ̄c −ωm
(δ̄c −ωm)2 + κ2/4

)
. (1.16)
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Figure 1.4: Intra-cavity photon number nc as a function of cavity fre-
quency ωc(x) for a red detuned drive with frequency ωrL
(red) and a blue detuned drive with frequency ωbL (blue). For
ωm � κ, the intra-cavity intensity adiabatically follows the
motion. For a blue detuned drive the intra-cavity intensity
decreases as the cavity gets longer leading to spring hard-
ening since kopt = −F ′opt(x̄0) ∝ −n ′c(x̄0) > 0. With the same
argument, a red detuned drive causes the intra-cavity inten-
sity to increase as the cavity gets longer leading to kopt < 0

(anti-spring).

Note that the effect of the optomechanical interaction is, as g2 ∝ n̄c,
increasing linearly with laser power. The first and second terms
in Γopt can be identified with anti-Stokes and Stokes scattering. In
particular, the anti-Stokes process leads to cooling (Γopt > 0) and
its rate is maximized when δ̄c ≈ −ωm, such that the frequency of
the scattered photon (which takes away a phonon of energy) aligns
with the cavity resonance. Likewise, the Stokes process leads to
heating (Γopt < 0) and is maximized when δ̄c ≈ ωm. Note that for
substantial heating/cooling to take place, the mechanical sidebands
have to be resolved ωm > κ; otherwise both processes take place
with an almost equal rate. The maximal cooling rate is Γmopt = 4g

2/κ.
In the unresolved sideband regime κ � ωm, the shift in the

mechanical frequency dominates over the damping rate, and takes
the form

δωopt ≈ g2
2δ̄c

δ̄2c + κ
2/4

. (1.17)

It follows that the mechanical frequency shift is positive for a
blue-detuned laser (spring) and negative for a red detuned laser
(anti-spring).
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The intuition for the optical spring effect in the example of a
moving mirror is given in Fig. 1.4, which shows the intra-cavity
photon number nc as a function of cavity resonance frequency
ωc for a blue detuned ωb

L (blue, dashed) and a red detuned ωr
L

(red) drive. We first consider the blue-detuned case and small
fluctuations of the mirror motion around its equilibrium position x0.
If the mirror displaces in such a way that the cavity becomes longer,
then the cavity resonance detunes even further from the laser
frequency. This results in a reduced intra-cavity photon number
nc, and a reduced radiation pressure force pushing the mirror
outward (or equivalently, this appears as an extra force pushing the
mirror back toward its equilibrium). The final result is an optical
spring effect, where the optical contribution to the spring constant
kopt = −F ′opt(x̄0) ∝ −n ′c(x̄0) > 0, is proportional to the derivative of
the photon number at the equilibrium position. A similar argument
reveals that red-detuning gives rise to an anti-spring effect. We note
that there would be no optical spring effect without the existence
of a external restoring force as the mirror would just be pushed to
infinity.

For δ̄c = ±κ/2 a maximum shift of δωmopt = ±2g2/κ can be
achieved. A summary of the standard regimes of optomechanics is
given in Fig. 1.5. In Fig. 1.5a), we plot the optical damping rate Γopt,
normalized by its maximum value Γmopt (Eq. (1.15)), as a function of
δ̄c and ωm/κ. One can see clearly that damping is most significant
in the resolved sideband regime ωm � κ and that cooling occurs
for a red detuned (δ̄c < 0) and heating for blue detuned (δ̄c > 0)
drive. In Fig. 1.5b), we plot the mechanical frequency shift δωopt,
normalized by its maximum value δωmopt (Eq. (1.16)) One can see
that the optical spring effect dominates in the unresolved sideband
regime ωm � κ and that an optical anti-spring occurs for a red
detuned drive δ̄c < 0 and spring hardening occurs for a blue
detuned drive δ̄c > 0.

These effects have been ubiquitously seen in optomechanical sys-
tems. For example, sideband cooling is a standard procedure used
to bring a mechanical system to close to its ground state, where the
number of phonons 〈b†b〉 ≈ 0 [5, 28]. Mirror spring hardening of a
Fabry-Pérot resonator [10, 29] and spring hardening of microlevers
as a mirror in microcavities [30] have been demonstrated.

While a classical picture is indeed sufficient to understand the
reduced dynamics of the mechanical oscillator, the linearized “stan-
dard model” of optomechanics nonetheless does allow for some
interesting quantum functionalities. Formally, the Hamiltonian of
Eq. (1.8), which is quadratic in creation and annihilation operators,
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Figure 1.5: Summary of standard regimes of optomechanics
a) Optical damping rate Γopt normalized by its maximum
value Γmopt, as a function of detuning δ̄c and mechanical fre-
quency ωm (each of these normalized by the cavity linewidth
κ). Cooling occurs for a red detuned (δ̄c < 0) and heating for
blue detuned (δ̄c > 0) drive. Both processes dominate in the
resolved sideband regime ωm � κ.
b) Optically induced shift of mechanical frequency δωopt nor-
malized by its maximum value δωmopt, as a function of de-
tuning δ̄c and mechanical frequency ωm (each of these nor-
malized by the cavity linewidth κ). The optical spring effect
dominates in the unresolved sideband regime ωm � κ. An
optical anti-spring is created for a red detuned drive δ̄c < 0
and spring hardening occurs for a blue detuned drive δ̄c > 0.
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implies that the system dynamics will only evolve within the space
of so-called “Gaussian states”, provided that the external driving
and noise are classical (e.g., coherent state driving and thermal
states) [31]. As a more formal description is beyond the scope of
this introduction we will just provide some intuition here. First,
the linearized model enables “quantum state transfer”, in which
an optical quantum state and a mechanical quantum state can
be coherently converted into one another [32, 33]. This is in fact
closely related to optomechanical cooling – specifically, a phonon
is not removed into some inaccessible bath, but is in fact coher-
ently converted into an anti-Stokes photon. The linearized model
also enables entanglement between the mechanical and optical
systems [34–36]. This arises from viewing optomechanical heating
not as an incoherent process, but one where each added phonon
is accompanied by the generation of a (correlated) Stokes photon.
These processes can in turn be exploited for diverse processes such
as a quantum memory based upon optomechanics [37], quantum
coherent microwave-to-optical conversion [38], or heralded single-
photon generation [39]. Despite this, Gaussian states only form a
small portion of the total Hilbert space, and thus it would be highly
desirable to go beyond the linearized Hamiltonian of (1.8).

1.3 non-standard regimes of optomechanics

In the previous section we have reviewed the standard regimes of
optemechanics, where both the motion and the optical field have
been linearized around the classical, steady-state values. In this
section, we will introduce some additional regimes, with the goal
of identifying and accessing richer phenomena than allowed by
the linearized system. We will first give up on the linearization
of the motional degree of freedom and afterwards explore strong
optomechanical coupling, gm & κ, where the linearization of the
cavity field breaks down.

1.3.1 Non-linear motion

In order to arrive at the optomechanical interaction Hamiltonian
(Eq. 1.3) we expandend the frequency shift (Eq. 1.2) up to linear
order. The next order term is proportional to x2, whose quantum
mechanical consequences we will briefly discuss now. The optome-
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Figure 1.6: Quadratic optomechanical coupling?
a) Highly reflecting membrane in the middle of a cavity. The
sytem can be viewed as two optical modes with frequency
ωl(x) = ω̃− sx and ωr(x) = ω̃+ sx coupled by a tunneling
rate t.
b) Eigenenergies of system a) as a function of membrane
displacement x with t = 0.1 and s = 1. Although the original
Hamiltonian only contains linear optomechanical coupling
plus linear cross-coupling, the eigenenergies behave like x2

around x = 0 due to anti-crossing. This behavior has been
incorrectly interpreted as quadratic optomechanical coupling
[42].

chanical interaction Hamiltonian with quadratic coupling is given
by

H
(2)
I = g

(2)
m a†a(b† + b)2. (1.18)

The quadratic optomechanical coupling strength g
(2)
m ∝ x2zp is

proportional to the zero-point motion squared, and thus extremely
small for conventional optomechanical systems. Nonetheless, at
least in theory, it has been shown that in the weak coupling regime
g
(2)
m < κ,ωm, the cavity mode can again be strongly driven and its

dynamics linearized. Now, however, the interaction with light in
principle allows for motional squeezing and non-linear cooling due
to the coupling terms proportional to (b†)2 and b2, which generate
or annihilate pairs of phonons at a time [40]. On the other hand,
the term a†ab†b in principle allows for quantum non-demolition
measurements of the phonon number, by measuring the phonon
number-dependent optical cavity frequency [41]. The fact that this
interaction term commutes with phonon number ensures that it is
not perturbed by back-action.

Even though theoretically studied, quantum effects from quadratic
optomechanical coupling have not been experimentally observed
up to date. In previous experiments, static transmission spectra
have been recorded for a membrane in the middle of a cavity [14,
42]. By moving the membrane by hand, one can map out an x2
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dependence of the cavity resonance frequencies, such as around
a symmetric anti-node of the cavity. However, such a static mea-
surement is not sufficient to conclude a Hamiltonian of the form
(1.18). A counter-example where this approach breaks down is the
following: Imagine a highly reflecting membrane in the center of
a Fabry-Pérot cavity as illustrated in Fig. 1.6 (and incorrectly pro-
posed for strong quadratic optomechanical coupling in [42]). The
system can be modeled as two optical modes, occupying the left
and right sides of the cavity, and interacting via the small but finite
transmission allowed by the membrane. The Hamiltonian describ-
ing this situation is HT = ωl(x)a

†
lal+ωr(x)a

†
rar+ t(a

†
lar+ala

†
r),

where al and ar are the photon annihilation operators for the left
and right mode, respectively. The corresponding resonance frequen-
cies ωl(x) ≈ ω̃− sx and ωr(x) ≈ ω̃+ sx of these modes depend
in first approximation on the linear position x of the membrane,
where ω̃ is the frequency of both modes if the membrane is at
the center x = 0. The modes interact by tunneling through the
membrane with rate t.

Fig. 1.6 shows a plot of the eigenfrequencies of this Hamiltonian
as a function of membrane displacement x. Here, for the sake of
demonstration, we assume s = 1 and t = 0.1 and work in dimen-
sionless units. Measuring the eigenfrequencies of this system as a
function of displacement would yield a scaling of x2 around x = 0.
However, it would be wrong to infer a quadratic optomechanical
coupling from just this behavior, since the original Hamiltonian
clearly just contains linear optomechanical coupling plus linear
cross-coupling. It can be shown that the conditions for achieving
QND measurement of phonon number with the Hamiltonian HT
are much more stringent, corresponding to attaining the single-
photon, single-phonon strong coupling regime of optomechanics,
gm > κ [43].

In order to resolve this issue, one would need to quantize the elec-
tromagnetic field with dielectric boundary conditions [44], which
would provide a rigorous derivation of the starting Hamiltonian
(at least for a model system). Another approach, which we describe
in Chapter 3, is to use a single atom coupled to a cavity, whose
Hamiltonian is already and unambiguously known.

While quadratic optomechanical coupling has been discussed in
literature, one might also wonder if even richer effects could arise,
if the mechanical motion is unconstrained and thus the functional
form of ωc(x) could be even more complex. We will discuss some
of the consequences in Chapter 2 (in the classical regime) and
Chapter 3 (quantum).
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1.3.2 Strong optomechanical coupling

As mentioned in Sec. 1.2 the interaction Hamiltonian described
by Eq. (1.3) is intrinsically non-linear. Although working in a lin-
earized regime of dynamics (Eq. (1.8)) captures many interesting
phenomena, it fails for single-photon strong optomechanical cou-
pling gm & κ.

For resolved vibrational sidebands ωm > κ, strong optomechan-
ical coupling leads to a photon blockade effect, which has been
theoretically analyzed [45]. Here, the interaction is strong enough
that one photon in the cavity essentially displaces the mechanical
element enough that the cavity frequency shifts by more than a
linewidth. Under certain conditions, this can result in the capability
of the system to only resonantly transmit single photons at a time,
resulting in a non-classical "anti-bunching" signal in transmission.
Such anti-bunching is usually associated with two-level atoms.
Thus, its observation would be highly exciting, and might invite a
discussion of whether optomechanical systems could in principle
replace atoms for quantum optical information processing.

We will now give more detailed intuition for the optomechan-
ical photon blockade phenomenon, which exists in the resolved
sideband regime. The system Hamiltonian is given by

Hop = ωmb
†b+ωc(x0)a

†a+ gm(b† + b)a†a. (1.19)

From the interaction (last term) one can interpret that a given pho-
ton number Fock state |nc〉 imparts a constant mechanical force of
∝ gm ·nc. This force displaces the mechanical equilibrium position
by δx ∼ −nc · xzpgm/ωm. Putting that displacement back into the
interaction, one can see that this displacement lowers the energy by
g2mn

2
c/ωm. The resulting energy spectrum of Hamiltonian (1.19)

is illustrated in Fig. 1.7. Here, |nc,m〉 denotes the state with nc
photons and m phonons. If the laser frequency is resonant with the
transition |0c, 0〉 → |1c, 0〉 then a second photon entering the system
is off resonant from the transition |1c, 0〉 → |2c, 0〉 by an amount
−2g2m/ωm. If this nonlinearity is larger than the cavity linewidth,
g2m/ωm > κ, then the first photon would be resonantly transmitted
while the second photon would not, resulting in a non-classical
"anti-bunched" transmitted field [45]. For this so-called "photon
blockade" effect to occur, it is also necessary to maintain sideband
resolution, ωm > κ, to prevent the near-resonant transmission of
the second photon via the excitation of phonon states |2c,m 6= 0〉.

In Chapter 4 we demonstrate that an atom trapped in and dis-
persively coupled to a high finesse cavity constitutes an attractive
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Figure 1.7: Optomechanical photon blockade. Spectrum of the optome-
chanical Hamiltonian (1.19). |nc,m〉 denotes the state with nc
photons and m phonons. In this diagram, we focus on transi-
tions involving states with m = 0 phonons (black lines), while
other states (m = 1 shown here) are denoted by gray lines. A
laser with frequency ωL, which is resonant with the transi-
tion |0c, 0〉 → |1c, 0〉 (the zero-phonon line), cannot resonantly
excite a second photon |2c, 0〉 as optomechanical interactions
shift the relative energy of this state by an amount 2g2m/ωm.

platform for realizing this regime. In particular, we show that
current experiments should be already able to obtain strong op-
tomechanical coupling and resolving mechanical sidebands. This
can then be experimentally verified by the anti-bunched statistics
of the transmitted light.

Consequences of the strong optomechanical coupling regime
with unresolved sidebands κ� ωm are thus far unexplored in lit-
erature. This is perhaps because with conventional optomechanical
systems one cannot cool to the ground state in the first place in this
regime, and thus any quantum effects that arise would need to be
observed on top of a thermal background of phonons. In Chapter
3, we will provide for the first time a theoretical analysis of this
regime, which is naturally reached by dispersively coupling atoms
to cavities with small mode volumes. The use of atoms to explore
this regime is novel, as the atomic motion can be separately cooled
to the ground state by standard techniques, and is highly decou-
pled from any thermal or decoherent environment. This allows
novel quantum effects to emerge.

1.4 overview of the thesis results

In the previous sections we have reviewed the standard regimes of
optomechanics where the motion and the field have been linearized
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leading to the “optical spring” effect and cooling and heating
of mechanical motion. These effects have been both theoretically
analyzed and also experimentally observed. Then we focused on
non-standard regimes of optomechanics, where either the motion or
the field cannot be linearized. Those effects have not been observed
yet. Now we will give an overview of the thesis results, which on
one hand analyze additional novel regimes within optomechanics
for the first time, and on the other hand propose specific systems
in which non-standard regimes of optomechanics could be realized
experimentally.

1.4.1 Self-induced back-action (SIBA) optical trapping in nanophotonic
systems

The beginning of our scientific journey was motivated by a couple
of experiments [46, 47], which observed a qualitatively new trap-
ping behavior in nanophotonic cavities leading to strongly reduced
local intensities experienced by the trapped particles. For example,
by trapping nano-particles inside a coherently driven photonic
crystal cavity, long trapping times (up to 20min) without apparent
photo-thermal damage or photo-bleaching of the particles have
been observed [47]. In particular, as presented in Fig. 1.8a), they
measured the particle induced resonance shift in time, which shows
the optical response of the cavity in the presence or absence of a
particle using a scanning rate of 1 Hz. Additionally, in Fig. 1.8b),
they provide a snapshot, which shows the cavity transmission with
and without a trapped particle as a function of laser wavelength.
One can see an average resonance shift of 1.8 nm, which is larger
than the cavity linewidth. This clearly shows the capability of the
particle to shift the cavity in and out of resonance and as a conse-
quence turning its own trapping field on and off. Thus, one can
conclude that the particle plays an active role in the trapping mech-
anism by acting back on its own trapping field, thus coining the
term “self-induced back-action trapping" (SIBA).

Furthermore, the group of Romain Quidant at ICFO was running
an experiment of trapping gold nano-particles in plasmonic cavities
during that time and was seeing similar effects. In Fig. 1.8c) we
see their measured transmission as a function of time changing
around 50% for an empty cavity compared to a cavity contain-
ing a particle. However, both experiments were lacking a simple
theoretical model describing SIBA, which could possibly be used
to boost its performance and understand the advantages of SIBA
trapping over conventional optical tweezers. To find such a theory
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Figure 1.8: Experimental demonstration of a particle-induced reso-
nance frequency shift.
(a) Record of the time evolution of the cavity spectrum while
a particle is trapped in a photonic crystal cavity and after it is
released.
(b) Snapshots from (a), displaying an average resonance shift
of 1.8 nm from the unloaded cavity resonance, which is larger
than the bare cavity linewidth (width of the blue peak). c)
Transmission of an empty (grey) or with a trapped particle
(orange) plasmonic cavity as a function of time, normalized to
the transmission of an empty cavity.
Plots a) and b) are taken from [47] and plot c) is taken from
[48].
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became then our task. I want to mention that stimulating discus-
sions with Romain Quidant and learning experimental details from
Pau Mestres and Johann Berthelot made this process very enjoyable.
In Chapter 2 we will present such a simple theoretical model which
fully captures the physics of SIBA and provides a clear prescription
of how to optimize back-action effects. Some of the insights from
this theory helped Pau Mestres et al. to nicely demonstrate the
back-action of the particle on its own trapping potential with their
original experimental setup [48]. We will now give a short overview
of our approach to model SIBA and the remarkable results.

As has been experimentally observed, the key physics is that the
position of the trapped particle alters the resonance frequency of
the cavity, which results in a strong interplay between the intra-
cavity field intensity and the forces exerted. As this sounds a lot
like standard optomechanics, we will apply its formalism to this
problem. However, the frequency shift ωc(x) needs to be treated
globally as the particle is allowed to freely diffuse through the
cavity, and in contrast to standard optomechanics (where there
usually exists a natural restoring force for the mechanics), the
particle only experiences forces from the externally driven cavity
mode itself. As the SIBA effect has been observed by trapping
particles in water at room temperature, we conclude that this effect
is purely classical.

In Chapter 2 we will show that SIBA trapping exhibits several
surprising features, when compared to conventional optical tweezer
traps. First, the particle is effectively trapped in an intensity mini-
mum, even if it is nominally high-intensity seeking, which explains
the strong reduction of photo-thermal damage seen by experiments.
Furthermore, we show that back-action can be exploited to create
traps with strongly sub-wavelength spatial features, even if the cav-
ity mode itself obeys the diffraction limit, even allowing a square
well potential for a large enough ”back-action parameter“. The spa-
tial features of this trap can also be dynamically shaped using only
changes in laser frequency. We believe that these properties of SIBA
will have important implications for future trapping technologies.

1.4.2 Quantum SIBA with a single atom in a nano/micro-cavity (unre-
solved sidebands)

In the previous section, we solved for the classical expectation val-
ues as our system of interest was far from any quantum behavior.
However, motivated by the observation that the SIBA effect pro-
vides us with a square well potential, we were very curious about
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whether such an analysis holds up in the quantum domain. In
particular, a square well is interesting due to its highly anharmonic
spectrum, and might be useful to create, e.g., a two-level phonon.
For this reason, the next step of our journey is to derive a full
quantum master equation capable of describing the SIBA effect in
the quantum regime, which we will do in Chapter 3.

Even assuming that the square-well potential holds in the quan-
tum domain, a quick analysis shows that the energy scales asso-
ciated with realistic dielectric particles are much too low to make
preparation of the ground state realistic. We thus turn to a single
atom in a cavity, with the goal of taking advantage of its light mass
and decoupling of its motion from a thermal bath.

There are already many experiments coupling single neutral
atoms [49–52] or ions [53–59] to high-finesse cavities. In particular,
experiments [49, 50, 60, 61] now routinely reach the strong coupling
regime of cavity QED, wherein an atom maximally coupled to the
cavity (in an anti-node) shifts the bare cavity frequency by more
than a linewidth. Moving the atom by a quarter-wavelength to a
node eliminates this shift. Thus, a zero-point motion on the order of
a fractional wavelength is sufficient to attain optomechanical strong
coupling, which is easily achievable given the light single-atom
mass.

Thus, we derive a full master equation for a single atom in
a coherently driven nano-cavity. Although the quantum calcu-
lation yields an expectation value for the force, whose integral
corresponds to the classical square well potential, the square well
potential does not appear as the Hermitian Hamiltonian of the
particle itself. In other words, a significant part of the classical force
comes from cavity dissipation, and the entanglement that builds up
between scattered photons and the position of the atom.

We decided to shift our attention further onto the entanglement
between light and motion. To intuitively understand how strong
position-photon entanglement arises, we note that when gm > κ,
the uncertainty of the zero-point motion itself translates into an
uncertainty of the cavity resonance frequency that is much larger
than the linewidth. Thus, observing the reflection or transmission
of a single incident photon (revealing an off- or on-resonance cav-
ity) is consistent only with the atom being located or not in a
spatial region much smaller than the zero-point uncertainty. This
regime naturally emerges in the strong optomechanical coupling
regime with unresolved mechanical sidebands κ > ωm. We realize
that there are already many experiments focusing on achieving
strong coupling between a photon and the atomic internal degree
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of freedom within the field of cavity QED and we discovered that
this same resource also naturally enables one to reach this optome-
chanical strong coupling regime. We thought that one experimental
candidate system for our theory could be a new fiber-cavity setup
of Tracy Northup in Innsbruck.

Funny side story: Before we realized that strong optomechanical
coupling could be achieved within cavity QED I met Tracy on a
conference in Benasque where she explained me her fiber cavity
experiment in which she strongly couples single 40Ca+ ions to a
cavity mode. We also discussed how she could model optomechan-
ics with her system and what she could measure and things looked
really interesting. However, in the end she accidentally gave me the
parameters from an older experiment of a high finesse Fabry-Pérot
cavity (well, most likely I confused it). Looking at those parameters
at home I was first disappointed, as in that particular experiment
mechanical sidebands were resolved ωm > κ and thus our theory
was not valid. However, a quick calculation with those parameters
showed that she would be able to reach the strong optomechanical
coupling regime with resolved sidebands (the holy grail of optome-
chanics!) with her older setup. Furthermore, she would be able
to show that she reached it by demonstrating optomechanically
induced photon blockade for the first time. So, out of this misun-
derstanding, a collaboration and a new resarch project was born
which we will discuss now.

1.4.3 Reaching the optomechanical strong coupling regime with a single
atom in a cavity (resolved sidebands)

As mentioned in Sec. 1.3.2, in order to reach the optomechanical
strong coupling regime, a zero-point mechanical displacement
should shift the frequency of the optical resonator by an amount
comparable to its linewidth, which is difficult due to the large mass
of conventional mechanical elements and the implied small zero-
point motion. Finding a platform where this single-photon strong
coupling regime of optomechanics can be explored constitutes a
very important goal of the field.

As a specific example, we show theoretically that one can observe
optomechanically induced photon blockade in realistic cavity QED
setups, where a non-classical anti-bunched field is produced as the
system is unable to transmit more than a single photon at a time.
We also describe how this optomechanical behavior can be clearly
distinguished from, and dominate over, the usual anti-bunching
associated with the two-level nature of the atom. Experimentally



1.4 overview of the thesis results 25

showing photon blockade induced by motion proves that one really
has reached the strong coupling regime of optomechanics and we
anticipate that the proposed platform of single atoms coupled
to a cavity will also enable many other exotic new regimes of
optomechanics to be identified and explored.
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S E L F - I N D U C E D B A C K - A C T I O N O P T I C A L
T R A P P I N G I N N A N O P H O T O N I C S Y S T E M S

2.1 introduction

Optical trapping is one of the most important experimental tools
in physics and life sciences because it enables precise control over
small dielectric particles [4]. Famous examples of its use are optical
levitation and cooling of nanoscale particles [23, 62–65], trapping of
bacteria [66] and cells [67], optical sorting in microfluidic channels
[68], the manipulation and stretching of DNA [69], and recently,
even trapping of individual HIV-1 viruses [70]. However, the dif-
ficulty of trapping a particle generally increases with decreasing
size, due to the decreased optical response of the particle. This
requires a commensurate increase in field intensity to maintain
trap stability, and leads to associated problems such as thermal or
material damage. Another limiting factor is the diffraction limit,
which constrains the length scale over which fields can vary, and
thus the stiffness or possible spatial features that a trap can possess.

A number of experiments in recent years have migrated from
trapping in free-space beams to the fields generated in nano-optical
resonators [46, 47, 71–74] as illustrated in Fig. 2.1. Such a paradigm
can enable some technical advantages. For example, the resonator
allows one to build up a higher intensity seen by the particle within
the structure compared to the input, thus relaxing input power
requirements. Engineering the nanophotonic structure also pro-
vides some flexibility over the field profile, and thus the trapping
potential. However, it is clear that simply replacing the input field
with the enhanced one does not relax any requirements from the
standpoint of intensity seen by the particle. Therefore it remains an
open question whether one can circumvent these seemingly funda-
mental trade offs between particle size and the intensities required
to achieve given trap depths, frequencies, and spatial confinement.
At the same time, doing so would have significant implications for
optical manipulation as a tool in physics, chemistry and biology.

In this context, a number of experiments have observed quali-
tatively new trapping behavior in nanophotonic cavities [46, 47].
The key physics is that the position of the trapped particle al-
ters the resonance frequency. This results in a “self-induced back-

29
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Figure 2.1: Schematic illustration of trap configurations. a) A dielectric
particle trapped with an optical tweezer in free space, b) a
plasmonic cavity (e.g., a metallic bowtie antenna), c) a photonic
crystal cavity.

action" (SIBA) effect in which the motion dynamically affects the
build up of intra-cavity intensity, and thus the optical force exerted.

Here, we develop a general theoretical model for SIBA. Using
such a model, we show how parameters can be chosen to maximize
the effects of back-action, and that a single “back-action parameter"
η ∝ Q · V/Vm, proportional to the resonator quality factor and
the ratio of particle to cavity mode volumes, characterizes the per-
formance of any optimized system. In particular, the back-action
parameter indicates how many line widths the particle can shift
the cavity resonance frequency due to its movement. For large η,
large shifts in the cavity detuning relative to the laser frequency as
the particle moves can induce strong changes in the intra-cavity in-
tensity. Under these circumstances, and when properly optimized,
such a trap yields very different trade-offs between intensities,
trap depth, and confinement, which should have significant con-
sequences for optical trapping technology. Specifically, we show
that back-action can be exploited to create traps with strongly sub-
wavelength spatial features, even if the cavity mode itself obeys the
diffraction limit. The spatial features of the trap can also be dynam-
ically shaped using only changes in laser frequency. Furthermore,
the particle can effectively be trapped in a dynamical intensity
minimum, even if it is nominally high-intensity seeking, which
can strongly reduce the effects of photo-thermal damage. Finally,
we discuss the possibilities for implementation in nano-plasmonic
(Fig. 2.1b)) and photonic crystal (Fig. 2.1c)) systems.

2.2 optical tweezers

We first briefly review the properties and limits of trapping with
free-space optical tweezers. Considering a small dielectric particle
whose dimensions are much smaller than the optical wavelength
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d � λ, its response to a monochromatic beam with frequency
ω is that of a point dipole with induced dipole moment pind =

α(ω)E(x). The interaction between the induced dipole and the field
itself results in a stored (potential) energy. This leads to the well-
known potential for optical trapping in free space, such as by using
an optical tweezer [4]:

UT (x) = −
1

4
Re(α(ω))|E(x)|2 (2.1)

where α(ω) is the frequency dependent polarizability of the parti-
cle and |E(x)|2 ∝ I(x) is the peak electric field amplitude squared
at the particle position x, which is proportional to the intensity I(x).
In the following, we will focus on the case where the polarizabil-
ity is positive and largely frequency independent, which models
well a typical dielectric particle. In this case, the dielectric particle
is trapped around points of local maximum intensity. For sub-
wavelength particles, the polarizability is proportional to particle
volume, α(ω) ∝ V . It can thus be seen that the trapping of smaller
particles requires a commensurate increase in intensity to maintain
a fixed trap depth. Furthermore, the spring constant around the
trap minimum xmin, kspring = U ′′T (xmin) .

V·I
λ2

, in addition to being
proportional to the beam intensity I and particle volume V , is at
best proportional to the inverse of the optical wavelength squared,
as the diffraction limit sets this as the minimum scale over which
free-space optical fields can vary.

2.3 trapping in nanoscale resonators

We now examine the case where the particle is trapped in a
nanoscale cavity. Our formalism is quite general, covering equally
systems such as plasmonic and photonic crystal cavities, and trap-
ping in vacuum or fluid environments. Qualitatively, the new fea-
ture of such a system is that the resonance frequency of the cavity
depends on the particle position, enabling the particle motion to
feed back on its trapping potential. We then distinguish the regimes
in which this system gives rise to standard optical trapping as in
Eq. (2.1), versus a novel “back-action" trapping mechanism.

A general model of this system is given by following Hamilto-
nian:

H =  hωc(xp)a
†a+  h

√
κexE0

(
a†eiωLt + ae−iωLt

)
+
p2

2m
(2.2)

where ωc(xp) is the resonance frequency of the optical cavity as a
function of particle position xp and a is the annihilation operator of
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the cavity mode. κex denotes the decay rate of the cavity into some
particular external channel (such as free-space radiation, coupling
fiber, etc.), which also serves as the source of injection of photons
into the cavity with number flux E20 and frequency ωL. The last
term, Ekin = p2

2m , describes the kinetic energy of a particle with
momentum p and mass m. In addition to the external coupling, we
assume that the cavity has an intrinsic loss rate κin, such as through
material absorption or scattering losses. The total cavity linewidth
is thus κ = κin + κex. In principle, the particle also contributes a
position-dependent loss term κ(xp) due to its scattering of light out
of the cavity mode. While this term could be explicitly included
in the analysis, this position-dependent effect is negligible under
reasonable conditions as the scattering rate ∝ V2

λ6
rapidly falls off

for sub-wavelength sizes, as shown in Appendix A.2. Thus, the
quality factor of the resonator is defined as Q = ωc/κ, where ωc
is the empty cavity resonance frequency.

The system dynamics under the Hamiltonian of Eq. (2.2) and
system losses are described by standard Heisenberg-Langevin equa-
tions [26]. As the regime of interest for trapping is far from any
quantum behavior, we proceed to solve their classical expectation
values. We neglect damping of the mechanical motion and the
effect of a thermal environment, which do not influence the optical
force and can be added independently later on. The equations of
motion then read

dxp

dt
=
p

m
(2.3)

dp

dt
= −n(xp) hω

′
c(xp) (2.4)

d

dt
β = i (ωL −ωc(xp))β−

κ

2
β+ i

√
κexE0 (2.5)

where β = 〈a〉 is the expectation value of the photon amplitude
while n = |β|2 is the expectation value of the photon number in
the resonator. We note that even in state-of-the-art photonic crystal
cavities, the achievable quality factor Q = ωc/κ ≈ 106 results in
decay times of κ−1 ∼ 1 ns that are significantly shorter than the
timescales of motion [75]. Thus, this motivates an approximation
dβ
dt ≈ 0 where the cavity is able to instantaneously respond to the
particle motion.

Before solving equations (2.3-2.5), we want to examine how strongly
the particle affects the resonance frequency. To quantify this, we
compare the frequency shift δωc(xp) = ωc(xp) −ωc with half of
the line width κ/2 of the resonator, where ωc is the resonance
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frequency of the empty cavity. Within lowest order perturbation
theory, where the particle induces a frequency shift much smaller
than the bare cavity frequency, it can be shown that (see Appendix
A.1):

2δωc(xp)

κ
= −η · f(xp). (2.6)

Here, we have defined the dimensionless back-action parameter
η =

α(ω)
ε0Vm

Q, where Vm is the cavity mode volume. f(x) is the
dimensionless spatial intensity profile of the empty cavity, normal-
ized to be 1 at the intensity maximum. Thus, as 0 6 f(x) 6 1, the
back-action parameter η characterizes how many linewidths (half-
width half-maxima) the particle can shift the resonance frequency
of the cavity moving from the minimum f(x) = 0 to the maximum
of the mode profile. For sub-wavelength dielectric particles the
polarizability α(ω) ∝ ε0V is proportional to the particle volume,
with the pre-factor depending on the particle refractive index and
shape [76]. Thus, achieving a large back-action parameter requires
a sufficient combination of large cavity quality factor and ratio of
particle to cavity mode volume, η ∝ Q · V/Vm. When the particle
size is larger than kr & Q−1/6 (with k = 2π/λ), the effect on the
quality factor due to light scattering by the particle cannot be ne-
glected anymore as shown in Appendix A.2. We note that within
the approximations described above, our equations are rigorous,
although numerical simulations would generally be needed to ac-
curately obtain the mode volume, the intensity profile f(x), and
polarizability α for complicated experimental configurations.

The expectation value of the intra-cavity photon number n(xp) =
|β|2 reads:

n(xp) =
4E20κex

κ2
1

1+
(
ηf(xp) + ∆̃

)2 (2.7)

where we have defined the dimensionless detuning between the
laser and empty cavity frequencies, ∆̃ = 2(ωL −ωc)/κ. From
Eq. (2.7), one sees that there are certain positions of the particle xr
that cause the driving laser to become resonant with the (frequency-
shifted) cavity, ∆̃+ ηf(xr) = 0, and where the intra-cavity photon
number is maximized. We call these positions the resonant po-
sitions xr, which can be chosen by adjusting the laser frequency
ωL. Note that in arbitrary dimensions the resonant positions ~xr
are contour points/lines/surfaces in 1D/2D/3D and follow the
symmetry of the mode profile, see Fig. 2.2. Inserting Eq. (2.7) into
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Figure 2.2: Back-action trapping in the fundamental mode of a Fabry-
Perot cavity, with dimensionless intensity profile f(x) =

cos2(kx) (dashed blue curve). a) In the regime of small back-
action parameter (η = 0.1), the intra-cavity intensity is not
significantly affected by the particle motion. Thus, the local in-
tensity I(xp) seen by the particle (red) is directly proportional
to f(x), while the trapping potential U(x) ∝ −f(x) (yellow).
For an increasing back-action parameter η� 1 the seen local
intensity I(xp) forms sharp peaks centered around the reso-
nant points xr and the trapping potential U(x) converges to a
square well potential. b) Spectra of intra-cavity photon num-
ber n(ωc(xp)) taken at the instantaneous particle positions
shown in the η = 10 and η = 50 cases, respectively. For η = 10,
we consider the case where the particle is instantaneously
located at one of the resonant positions xr1, such that the laser
frequency is resonant with the cavity at this moment to gen-
erate a large intra-cavity intensity. For η = 50, the particle is
far from the resonant positions, and the large detuning of the
laser from resonance strongly suppresses intra-cavity intensity.
The vertical scales of these plots are in arbitrary units.
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Eq. (2.4) and integrating the negative force with respect to xp yields
the general potential for trapping in resonators:

U(x) = −2 hE20
κex

κ
arctan

[
ηf(x) + ∆̃

]
. (2.8)

We will proceed by looking at different regimes of this potential:
First we consider the regime where the particle induces a shift
on the cavity resonance frequency that is negligible compared to
its linewidth, which corresponds to η� 1 from our definition in
Eq. (2.6). Then, the movement of the particle does not significantly
change the intra-cavity intensity, which recovers the optical tweezer
regime. In particular, expanding Eq. (2.8) for small η, one finds that
UT (x) = −2 hκex

κ E
2
0

η

1+∆̃2
f(x). Using the definition of η =

α(ω)
ε0Vm

Q

and identifying |E(x)|2 = 8
 h

ε0Vm

κex
κ QE

2
0

1
1+∆̃2

f(x) as the time aver-
aged intra-cavity field amplitude, we see that UT (x) reduces to
the optical dipole potential in Eq. (2.1). In this regime, the poten-
tial depth increases linearly with Q (i.e., with η), reflecting the
effect of a built-up intra-cavity intensity. The different regimes
are illustrated in Fig. 2.2 where we choose the first harmonic of a
Fabry-Perot cavity as a mode profile.

2.4 trapping with back-action

We now investigate the very different trap properties that emerge
in the regime η� 1.

An increase in the quality factor initially produces an increased
trap depth for values Q . πVm/V (at which point η ∼ 1). For larger
values, however, η � 1 and the arctan in Eq. (2.8) saturates be-
tween the values of ±π/2, yielding a trap depth of δU = 2π hE20

κex
κ .

Significantly for η� 1, the depth no longer depends on Q nor the
particle properties, and is only dependent upon the input intensity.
The origin of this saturation can be understood by first considering
Fig. 2.2, which shows that the intra-cavity intensity as a function of
particle position forms sharp peaks around the resonant positions
xr for η� 1. From Eq. (2.7) it follows that their width is in good
approximation ≈ 2

ηf ′(xr)
and it is only within this narrow spatial

region (scaling like η−1 ∝ Q−1) that the cavity exerts significant
forces on the particle. At the same time, the peak intra-cavity pho-
ton number at xp = xr (and thus the peak force) grows linearly
with Q. Thus, the maximum work that the cavity can do to keep
the particle in the trap, as a product of force and distance, becomes
independent of Q in the high back-action limit.

Note that the trapping potential turns into an approximate square
well if the distance between the intra-cavity intensity peaks is
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larger than their width d = |xr2 − xr1| � 2
ηf ′(xr)

. The wells are
(symmetrically) centered around the mode profile maximum x0,
see Fig. 2.2. Remarkably, the resonant positions xr can be changed
with laser frequency, which provides a convenient mechanism
for dynamic trap shaping in contrast with conventional optical
tweezers.

Another interesting property of the trap in the high back-action
regime is that around the minimum x0 of the potential, the intra-
cavity photon number is strongly suppressed due to the large
detuning from resonance. Thus, the particle is effectively trapped
in a dynamical intensity minimum, despite the fact that it has
positive polarizability and is thus nominally high-intensity seeking.
This would have tremendous consequences in the reduction of ther-
mal damage due to optical absorption by the particle. Motivated by
this observation, we seek to quantify how much the time-averaged
intensity seen by the particle can be reduced.

We define the time-averaged experienced intensity 〈Iexp〉t as the
local intensity experienced by the particle at its position, averaged
over one motional period T . It is thus given by

〈Iexp〉t =
c hωL
2VmT

∫T
0

n(xp(t))f(xp(t))dt (2.9)

where xp(t) is a solution to the differential Eq. (2.4) together with
Eq. (2.7). In order to proceed further, we consider a simple case of
the fundamental mode of a 1D Fabry-Perot cavity, f(x) = cos2(kx)
with k = π/L, where L = λ/2 is the cavity length. Although we
have switched to a specific model to illustrate the back-action
mechanism, we believe the overall conclusions are generally valid.
A finite temperature of the environment can be taken into account
by averaging the results for different maximal kinetic energies Ekin

(kinetic energy of the particle in the trap minimum) according to a
Boltzmann distribution.

We have evaluated Eq. (2.9) by numerically solving the equations
of motion (2.3)-(2.5). In Fig. 2.3, we plot the time-averaged expe-
rienced intensity 〈Iexp(η)〉t normalized by the value in the optical
tweezer regime 〈Iexp,T 〉t, as a function of back-action parameter η.
As seen before, the optical tweezer regime is reached by taking
η� 1. To make a fair comparison, we enforce that the trap depths
in the two cases are equal, δU(η) = δUT . For a fixed xr, the figure
shows a significant reduction in time-averaged intensity for high
back-action parameter, which also depends on the ratio of kinetic
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energy Ekin to trap depth δU. In the high back-action regime, it is
possible to derive an analytic expression (see Appendix A.3):

lim
η→∞〈Iexp(η)〉t =

2cε0
α(ω)

f(xr)

|f ′(xr)|

Ekin

xr
(2.10)

A new feature of the back-action trap is the gradual decoupling
between trap depth and the spatial region δx = |xt2 − xt1| (xt1 and
xt2 are the classical turning points) to which the particle is confined.
For large enough η they decouple completely since the classical
turning points converge to the resonant positions (i.e., the edges of
the square well) and thus δx→ d. In this regime, confinement only
depends on laser frequency, whereas trap depth only depends on
laser power. This independent control again highlights the ability
to dynamically reshape the trap. In contrast, in the optical tweezer
regime, the trap depth, kinetic energy and confinement are in-
evitably connected.

Instead of comparing the experienced intensity at fixed trap depth,
we can also investigate the trade-off between intensity and con-
finement δx = d in the large back-action limit. The locations of
the trapping wells are always centered around the mode profile
maximum x0 = 0. For small xr, an asymptotic expansion yields
f(xr)
|f ′(xr)|

≈ 1
2k2xr

. Thus, for high back-action and strong confine-

ment, we obtain 〈Iexp〉t ≈ 4cε0
α(ω)

1
(kδx)2

Ekin. Interestingly, expanding
Eq. (2.1) for the optical tweezer around the bottom of a standing
wave potential also produces 〈Iexp,T〉t ≈ I(x0) ≈ 4cε0

α(ω)
1

(kδx)2
Ekin,

which seems to indicate that no improvement is gained in intensity
vs. confinement with back-action.

Looking at Eq. (2.10), in the strong back-action regime, one of
the factors of 1

δx originates simply from the time T ∝ δx that
the particle takes to travel between the walls of the square well.
This part of the scaling seems fundamental and cannot be im-
proved within this model. On the other hand, the second factor
of 1
kδx clearly originates from the vanishing of back-action effects

around the maximum of the mode profile, as the frequency shift
becomes insensitive to first-order changes in the particle displace-
ment, f ′(x0) = 0. We show that this factor is not fundamental, and
can be eliminated by properly driving a second optical mode of
the system.
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Figure 2.3: Time-averaged experienced intensity of a trapped particle.
We plot the time-averaged experienced intensity as a function
of back-action parameter 〈Iexp(η)〉t, normalized with the value
in the optical tweezer regime η� 1. The two cases are set to
have equal trap depth. The plot is numerically calculated for
the case of trapping in the fundamental mode of a Fabry-Perot
cavity f(x) = cos2(kx) with resonant positions kxr = π/4.
The back-action regime can enable much lower average local
intensities than in the optical tweezer regime.
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2.5 two mode back-action

In this Sec. we show how the scaling between experienced intensity
and confinement can be improved to 〈Iexp〉t ∝ 1

kδx by using two
different cavity modes for trapping. In order to obtain concrete
results, we consider the simple geometry where the two modes con-
sist of the first and second harmonics of a Fabry-Perot (see Fig. 2.4),
although we believe that the conclusions hold quite generally. We
assume that each mode can be driven with its own laser, with am-
plitude E0i and frequency ωLi. As the equation for the intra-cavity
fields βi (generalized from Eq. (2.5)) of each mode are decoupled
from one another, they can be separately integrated as in the single-
mode case. Thus, the total potential Utot(x) =

∑
i=1,2Ui(x) is the

incoherent sum of the potentials in Eq. (2.8) for each mode. To
understand the relevant physics, it is sufficient to assume that the
mode driving amplitudes E0i, decay rates κex, κin, and back-action
parameters are identical, although the concepts can be easily gener-
alized.

The interesting regime will be when the resonant positions of
each mode are tuned by their respective driving laser frequencies
such that each mode is responsible for providing one trapping wall.
This is illustrated in Fig. 2.4b), where the left and right walls xr1 and
xr2 originate from the first and second cavity modes, respectively.
Significantly, the well can be located far from the nodes/antinodes
f ′i(x) = 0 where the effects of back-action would vanish for either
mode. In the following we will distinguish three different regimes
concerning the ratio between the distance d = |xr1 − xr2| and the
width ∼ 2

kη of these intensity peaks illustrated in Fig. 2.4.

We start by examining the high back-action regime, when the
distance of the intensity peaks is much larger than their width,
kd = k|xr1 − xr2| � 2

η , such that we encounter an almost per-
fect square-well potential as shown in Fig. 2.4b) and Fig. 2.5. It is
straightforward to generalize the high back-action limit of Eq. (2.10)
in the single mode case. As the particle is trapped far from points
where back-action effects vanish (f ′i(x) = 0), we recover the im-
proved scaling between experienced intensity and confinement,
〈Iexp〉t ∝ 1

kδx as already anticipated.

Qualitatively, the conditions needed to reach this scaling are that
kd � 2

η , so that the potential resembles a square well, but also
that the ratio of kinetic energy to potential depth is sufficiently



40 siba classic

large that the particle actually approaches the edges of the well.
This is schematically illustrated in Fig. 2.5. Assuming that the latter
condition is initially satisfied for a large value of d (subplot 1), it
continues to be satisfied by decreasing d (subplot 2). On the other
hand, it can be seen that dramatically increasing the trap depth
prevents the particle from reaching the edge (subplot 3), which
results in a less favorable scaling of intensity versus confinement.
In Fig. 2.5, we have plotted the results of experienced intensity vs.
confinement from full numerical simulations of equations (2.3)-(2.5)
(generalized to two modes). The different points for a fixed back-
action parameter η are obtained by variation of the input powers
and resonant positions xr (via the laser frequencies). Tuning the
resonant positions to reduce d = |xr1 − xr2| indeed enables one to
saturate the scaling of 〈Iexp〉t ∝ 1

kδx as long as kδx & 2
η , as illus-

trated in Fig. 2.6a).

For kδx . 2
η , the optimal scaling seen in the numerics goes like

〈Iexp,hb〉t ∝ 1
η(kδx)2

. The scaling with δx−2 resembles the optical
tweezer case, but the intensity is suppressed by a factor of η. We
call this the “harmonic back-action regime” (see Fig. 2.4a)). To un-
derstand this case, we first note that the particle moves by a small
enough amount around the trap minimum that the forces from
each mode can be linearized around small displacements to yield a
harmonic trap. Furthermore, for small displacements, the total time
averaged experienced intensity 〈Iexp〉t =

∑
i〈Iexp,i〉t ≈

∑
i Ii(x0) is

just the sum of the intensities of the respective mode at the trap
minimum xp = x0. The associated spring constant is:

kopt = −F ′(x0) =
∑
i

n ′i(x0)ω
′
c,i(x0) +ni(x0)ω

′′
c,i(x0) (2.11)

where the sum goes over all trapping modes. The first term n ′i(x0)

is a new contribution to the optical spring constant kopt originating
from the change in photon number with particle position around
the trap minimum. Intuitively, this back-action contribution to the
spring constant is maximized by ensuring the photon number of
each mode maximally changes around x0. This is roughly opti-
mized by setting kd ∼ 2

η , such that x0 corresponds to sitting half
a cavity linewidth away from the resonant position xr. Such an
optimization yields (see Appendix A.4):

kopt,i =
α(ω)

cε0
〈Iexp,i〉t

1

fi(x0)

[
ηif
′
i(xri)

2 − f ′′i (x0)
]

. (2.12)

The first term in the brackets originates from the change in photon
number with particle position, whereas the second term reduces to
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Figure 2.4: SIBA with two optical modes, illustrated here for the first two
modes of a Fabry-Perot cavity. Top: the mode profiles are given
by f1(x) = cos2(kx), f2(x) = sin2(2kx). Green: the resulting
optical trapping potential U(x). Bottom: intra-cavity intensities
I(x) as a function of particle position. a) In the harmonic back-
action regime, the distance between the resonant points is
comparable to the width of the intensity peaks, kd ∼ 2η . b) In
the high back-action regime, the distance significantly exceeds
the width, kd� 2

η .

the optical tweezer spring constant given by Eq. (2.1): kT = U ′′(x0).
Since f ′′(x0) ∼ f ′(x0)

2 ∼ k2, it can be seen that the back-action
contribution is a factor of η larger. We can equivalently interpret
this contribution as arising from an effective reduced wavelength
λeff ∼ λ√

η , which enables the generation of trap features far be-
low the diffraction limit. We emphasize that this effect originates
from the rapid change in intra-cavity photon number with particle
displacement rather than a change in the spatial mode itself (see
Eq. (2.11)), and thus there is no breakdown of the dipole approxima-
tion in which all of these expressions are derived. This is analogous
to the “optical spring" effect described in Sec. 1.2.3 and Fig. 1.4,
where an optical cavity can exert large restoring forces for small
displacements of a mechanical system. In the conventional optical
spring effect the stiffness of the mechanical mode itself plays the
role of our second optical mode, and serves to keep the equilibrium
position at a point of non-vanishing back-action (f ′(x0) 6= 0) [77,
78].

Exploiting the notion of a reduced wavelength, in the harmonic
back-action regime one can immediately conclude that the scaling
for average experienced intensity improves from 〈Iexp,T〉t ∝ 1

(kδx)2
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for an optical tweezer to 〈Iexp,hb〉t ∝ 1
η(kδx)2

. A more detailed opti-
mization of the system shown in Fig. 2.4 reveals that (see Appendix
A.4):

〈Iexp,hb〉t
〈Iexp,T〉t

=
4

η
(2.13)

for equal confinement and kinetic energy. We want to emphasize
that to reach this optimal scaling, one should fix kd = k|xr1 −

xr2| ∼
2
η . In other words, to achieve the best confinement for a

given intensity, one should increase the laser intensity (see Fig. 2.5,
subplot 4 and 5). This procedure enables one to stay along the
dotted line of the intensity versus confinement plot illustrated
in Fig. 2.6. In contrast, Fig. 2.6 also shows that by decreasing
the distance between the resonant positions, kd� 2

η , the scaling
deviates back towards the optical tweezer limit and the benefits of
back-action vanish.

2.6 conclusion

There have already been two types of systems, plasmonic cavi-
ties [79] and photonic crystal cavities [75], where SIBA has been
observed, and we now discuss the potential figures of merit associ-
ated with each. As the plasmon resonances associated with small
metallic systems do not obey a diffraction limit, they are able to
achieve strongly sub-wavelength mode volumes. On the other hand,
realistic quality factors are limited to Q . 10− 102. At the same
time, an upper bound on the validity of our calculation is that the
particle size V . Vm does not exceed the mode volume, and thus
we anticipate maximum possible values of η ∼ 10− 102 for such
systems. In photonic crystal cavities, the mode volume is limited
by the diffraction limit to Vm & (λ2 )

3, while extremely high quality
factors of Q ∼ 106 are possible [75]. This yields η ∼ 10, 100, 400 for
a dielectric sphere with radius r ∼ 6.5nm,15nm, 28nm (Appendix
A.2). There has been significant activity in recent years to develop
design principles in order to tailor the spatial modes of plasmonic
[79] and photonic crystal structures [80] for trapping. Combined
with the potentially large back-action parameters achievable, we
anticipate that our work will open up significant new opportunities
for optical trapping. It would also be interesting to explore the use
of large back-action parameters in other functionalities, such as
particle detection and feedback cooling.

Finally, it is intriguing to ask whether back-action trapping, and
the resulting square wells, could be applicable to atoms. Combined
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with the long coherence times of the atom, a square well could
potentially be used to generate a "two-level" phonon. This would
build upon the already rich field of mechanical effects of light on
atoms in cavities [81–85] and recent successful efforts to interface
cold atoms with nanophotonic systems [86, 87]. We thus turn to
this question in the next chapter.
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Figure 2.5: Potential with two optical modes. Here we show how the
trapping potential transforms as one either decreases the
distance d = |xr1 − xr2| between the resonant positions (via
changes in the laser detuning), or increases the laser intensity.
Transformations via changes in d and intensity are depicted
by the green and red arrows, respectively. For a given ki-
netic energy Ekin increasing the laser power lowers the ratio
between kinetic energy and trap depth. This ratio then de-
termines the region of the potential the particle is allowed
to explore. In potential 1) we are in the high back-action
regime (kd = k|xr2 − xr1|� 2

η ) where d and δU (laser power)
decouple and the potential forms a square well that the par-
ticle has sufficient energy to explore. Decreasing d until the
condition kd ∼ 2

η is reached enables one to stay in the high
back-action regime, as shown in 2). On the other hand, a signif-
icant increase in power, illustrated in 3), prevents the particle
from coming into contact with the edges of the well, and one
loses the favorable scaling of intensity versus confinement. At
kd ∼ 2η , one reaches the harmonic back-action regime, where
the particle experiences an approximate harmonic potential
regardless of laser power. Optimum intensity versus confine-
ment is achieved by then increasing laser power, as opposed to
further reduction in d, as illustrated in 4) and 5). The subplot
numbers 1), 2), 3), 4), 5) correspond to the same numbers as
indicated in Fig. 2.6b).
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Figure 2.6: Time-averaged experienced intensity vs. confinement for
two optical modes. a) Time-averaged experienced intensity in
units of cEkin

α(ω) as a function of confinement kδx = k|xt2 − xt1|.
The individual points originate from different combinations of
back-action parameter, laser power and detunings. The solid
lines indicate the scalings in the optical tweezer regime and
high back-action regime (kd = k|xr2 − xr1|� 2

η ). The dashed
line shows the optimized harmonic back-action regime, where
kd ∼ 2

η . b) Illustration of figure 2.6a) for a fixed η and Ekin,
and a schematic of the protocol to saturate the scaling bounds.
The green arrows denote a decrease in distance between the
resonant positions d = |xr1 − xr2|, while the red arrows de-
note an increase in laser power. The numbers 1), 2), 3), 4),
5) correspond to the same numbers as indicated in Fig. 2.5.
6) decreasing kd < 2

η suppresses back-action as the particle
motion no longer shifts the cavity mode frequencies.





3
E X P L O R I N G U N R E S O LV E D S I D E B A N D ,
O P T O M E C H A N I C A L S T R O N G C O U P L I N G U S I N G
A S I N G L E AT O M C O U P L E D T O A C AV I T Y

3.1 introduction

In optomechanics much progress has been made improving the
control over the interaction between photons and phonons at the
quantum level [88]. Lately there have been many important experi-
mental successes, which include the generation of slow light with
optomechanics [89], the entanglement of motion with microwave
fields [90], and very recently remote entanglement between two
micromechanical oscillators [91]. For most of the quantum phenom-
ena observed thus far or envisioned, sideband resolution, where
the mechanical frequency ωm exceeds the cavity linewidth κ, is
required. For example, this enables cooling to the quantum ground
state [92, 93], which represents a fiducial pure state preparation. In
one remarkable theoretical work [45], it has been predicted that the
combination of sideband resolution and single-photon optomechan-
ical strong coupling – where the zero-point motional uncertainty
induces a shift in the optical resonance frequency larger than the
cavity linewidth – would enable the generation of non-classical,
anti-bunched light.

Here, we study the complementary regime of single-photon op-
tomechanical strong coupling, but with unresolved sidebands [94,
95]. We show that interesting quantum effects both in the light and
motion can be observed, at least when the mechanical system is
well-isolated and can be separately prepared in the ground state. A
natural candidate system consists of a single atom [49–52, 96, 97] or
ion [53–58] in cavity QED, whose electronic transition is strongly
coupled to a near-resonant optical mode. To provide an intuitive
picture, strong coupling within cavity QED [98, 99] implies that a
point-like atom produces a shift in the cavity resonance frequency
that is larger than the cavity linewidth, when the atom is situated
at a cavity anti-node. If the atom is displaced by a quarter wave-
length to a node, this shift vanishes. Given the light mass, it is
straightforward for a trapped atom to have a zero-point motion on
that scale, thus realizing single-photon optomechanical strong cou-
pling. Furthermore, realistic trap frequencies for atoms are quite

47
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low (. MHz), and are naturally exceeded by the cavity linewidth
for small cavities [51, 52, 86, 101]. In this regime of optomechanical
strong coupling and unresolved sidebands, the interesting physics
arises because the resonance frequency of the cavity correlates
strongly with the atomic position, and as the reflection or trans-
mission of a single photon depends on the resonance frequency, a
strong entanglement between photon and motion ensues, which is
visible in both of these degrees of freedom.

In this work we begin by considering a single atom externally
trapped inside a cavity mode that is driven with a coherent state.
When the cavity frequency is detuned from the atomic resonance,
we derive from the full Jaynes-Cummings model of cavity QED
an effective optomechanical Hamiltonian, which only depends on
the atomic motion and cavity degrees of freedom. We proceed by
tracing out the cavity degree of freedom and analytically derive
an effective quantum master equation describing the motional dy-
namics of the atom only. This master equation would allow for
the calculation of motional energy eigenvalues and their lifetimes,
and yields interesting insights in the heating processes associated
with entanglement between light and motion. This entanglement
is also directly revealed by applying scattering theory to exactly
solve for the joint atom-photon wave function following the scat-
tering of a single incident photon. Using this formalism, we show
that the properties of the scattered photon can become entangled
with the atomic motion on length scales much smaller than either
the resonant wavelength or the atomic zero-point motion. As one
consequence, once the photon is traced out, the atomic motion is
seen to heat up significantly, even if the atom is tightly trapped
within the Lamb-Dicke limit. We also show that this entanglement
can manifest itself in the second-order correlation functions of the
outgoing field given a weak coherent state input, or be used to
produce a heralded single-phonon Fock state of the atomic motion.

3.2 cavity qed : jaynes cummings model

Before we study the dynamics of atomic motion inside an optical
cavity, we first motivate the field of cavity QED without including
motion. The two-level nature of the internal degrees of freedom of
single atoms makes them ultimate nonlinear optical elements, fun-
damentally only able to absorb and emit single photons at a time.
As single photons are already non-classical states of light, atoms
are a natural platform to potentially realize protocols for quantum
information processing. However, in order to efficiently harvest
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this nonlinearity with light one needs to ensure a strong interaction
between the atom and incident photons, which is unfortunately
extremely difficult in free space. For example, the interaction prob-
ability for a photon, which is resonant with an atomic transition
is P ≈ σ/A, where σ ∼ λ2 is the atomic optical cross section and
A is the light beam area. To maximize the interaction probability
the light has to be focused close to the diffraction limit A ∼ λ2.
This is not easy and maximally achieved values are P ∼ 0.05 for the
interaction between neutral atoms and focused laser beams [102,
103]. One popular solution to this problem is to make the same
photon interact with a single atom multiple times by placing the
atom inside a cavity, where the interaction probability is enhanced
by the number of photon bounces motivating the field of cavity
QED. The interaction between the atomic internal degrees of free-
dom and the cavity mode is described by the Jaynes-Cummings
(J-C) interaction Hamiltonian [104]:

HIJ = g0(a
†σge + aσeg), (3.1)

which models the transfer of excitations with rate g0 (the so-called
“vacuum Rabi splitting”) between the cavity mode described by
photon annihilation operator a and the atomic internal degrees of
freedom described by the Pauli matrices σge = |g〉 〈e| and σeg =

|e〉 〈g|. Here, |g〉 and |e〉 denote the atomic ground and excited states,
respectively. Due to this interaction and the nonlinear properties
of the atom, the energy eigenvalues of the composite cavity-atom
system are nonlinear as well and constitute the famous Jaynes-
Cummings Ladder, as illustrated in Fig. 3.1 for a system where
the atomic resonance ω0 = ωc matches the resonance frequency
of the cavity. The eigenstates of the system |n,±〉 = 1/

√
2(|n, e〉 ±

|n+ 1,g〉) are symmetric and anti-symmetric superpositions of n
photons in the cavity mode while the atom is excited, and n+ 1

photons in the cavity mode while the atom is in its ground state.
They have corresponding nonlinear energy eigenvalues of En,± =

nω0 ±
√
ng0. In this way, the nonlinearity of the atom converts

into a nonlinearity of the macroscopic cavity-atom system, which
as a whole enables a higher interaction efficiency compared to a
single atom in free space. The strong coupling regime of cavity
QED consists of the coherent coupling strength g0 exceeding both
the cavity linewidth κ and the atomic spontaneous emission rate γ.
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Figure 3.1: Jaynes Cummings Ladder. The energy eigenvalue spectrum
of an atom which is resonantly coupled to a cavity is nonlinear
since En,± = nω0 ±

√
ng0. The corresponding eigenstates are

|n,±〉 = 1/
√
2(|n, e〉 ± |n+ 1,g〉), where n/n+ 1 denotes the

number of photons in the cavity mode, and e/g refers to the
atomic excited/ground state, respectively.

Figure 3.2: An atom is trapped externally by a potential (blue) with equi-
librium position x0 inside a cavity with intensity mode profile
u2(x). Ψ0(x) is the initial wave function of the atomic motion.
Incident photons with frequency ωL arrive from the left. The
left mirror has a decay rate of κr and the right mirror has a
decay rate of κt.
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3.3 cavity qed with motion

In this section, we introduce the Jaynes-Cummings (J-C) model
[104] to describe the interaction of a (moving) two-level atom with
photons in a cavity mode with amplitude u(x) = cos(kcx), where
kc is the wavevector of the cavity mode as shown in Fig. 3.2. In
the case where the atomic frequency ω0 is far detuned from the
bare cavity resonance ωc, we eliminate the atomic internal degrees
of freedom, to arrive at an effective optomechanical interaction
between the atomic motion and cavity. We further proceed to derive
an effective master equation describing the atomic motion when
the cavity is externally driven by a coherent state with photon
number flux E20 and frequency ωL. We note that such a procedure
would give rise to, e.g., the usual optical cooling and heating rates
in a conventional optomechanical system [92, 93, 105]. In our case,
however, we neither linearize the cavity field around a steady-state
solution nor the motion, owing to the potentially large coupling
between motion and the cavity field, which leads to much richer
effects.

The full quantum master equation associated with the J-C model,
in an interaction picture rotating with the laser frequency ωL, is
given by

ρ̇ = −i
[
HJC, ρ

]
+ (Lγ + Lκ)ρ ≡ Lρ. (3.2)

The J-C Hamiltonian including motion is given by

HJC =ωmb
†b− δ0σee − δca

†a+
√
κrE0(a+ a

†)

+ g0u(x)(a
†σge + h.c.). (3.3)

It is written in terms of the detuning between laser and atom/cavity
δ0/c = ωL −ω0/c, respectively, and the mechanical frequency ωm
of the external trap. Furthermore, a and b denote the photon and
phonon annihilation operators, respectively, while σ¸˛ = |α〉 〈β|,
where α,β = g, e correspond to combinations of the atomic ground
and excited states. κr denotes the decay rate of the left cavity
mirror (reflection), which also serves as the source of injection of
photons. The right mirror has a decay rate of κt (transmission).
In addition to the external coupling, the cavity has an intrinsic
loss rate κin, such as through material absorption and scattering
losses. The total cavity linewidth is thus κ = κr + κt + κin. The last
term of HJC describes the coupling between cavity and atom with
the coupling strength g0u(x) depending on the atomic position
x = xzp(b+ b

†), which can be written in terms of the zero-point
motion xzp =

√
 h/(2mωm) (m being the atomic mass), and where
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g0 is the magnitude of the vacuum Rabi splitting at the anti-node of
the cavity. The Lindblad Lc operator describing cavity dissipation
is given by:

Lκρ = −
κ

2

(
a†aρ+ ρa†a− 2aρa†

)
(3.4)

and the general Lindblad operator L3D
γ for spontaneous emission

into three dimensions of the atom at a rate γ reads [81]:

L
3D
γ ρ = −

γ

2

(
σeeρ+ ρσee − 2

∫
dΩ~uNf(~u)σgee

−ikc~u·~rρeikc~u·~rσeg

)
.

(3.5)

This process, additionally to the emission of a photon, causes a
recoil of k = ω0

c ≈ kc opposite to the direction ~u of the emitted
photon, which is integrated over solid angle (dΩ~u) and weighted
by the distribution function Nf(~u) corresponding to the dipole
emission pattern. However, to provide a simpler model that qual-
itatively captures the correct behavior, we will just consider one
single direction of spontaneous emission along the positive cavity
axis (x). With a single spontaneous emission direction we can write

Lγρ = −
γ

2

(
σeeρ+ ρσee − 2σgee

−ikcxρeikcxσeg
)

. (3.6)

Now we consider the dispersive regime ∆ = ω0 −ωc � g0, κ,γ,
where the atom-cavity detuning is large. Thus the single-excitation
eigenstates of the J-C Hamiltonian are either mostly atomic (|ψ+〉 ≈
|e, 0〉) or photonic (|ψ−〉 ≈ |g, 1〉), where 0,1 denote the intra-cavity
photon Fock state number. These eigenstates have corresponding

eigenenergies E+1 ≈ ω0 +
g20
∆ u

2(x) and E−1 ≈ ωc −
g20
∆ u

2(x), respec-
tively. Here, we focus on the case when the system is driven near
resonantly with the photonic eigenstate. In that limit, the atom can
approximately be viewed as a classical dielectric that provides a
position-dependent cavity shift with an effective optomechanical

coupling strength ∝ g20
∆ . We will derive this effective optomechani-

cal model now in more detail.

3.3.1 Effective Optomechanical Model

For large laser-atom detunings δ0 � g0, the atomic ground state
population is approximately one, which allows for an effective
elimination of the atomic excited state [81, 106] using the Nakajima-
Zwanzig projection operator formalism [105, 107, 108] (details in
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Appendix A.5.1). The resulting effective master equation is given
by

ρ̇ = −i [Hom, ρ] + Lomρ, (3.7)

with an effective optomechanical Hamiltonian

Hom = ωmb
†b−∆c(x)a

†a+
√
κrE0(a+ a

†). (3.8)

The position dependent cavity-laser detuning is given by

∆c(x) = δc −
g20δ0

δ20 +
γ2

4

u2(x), (3.9)

which now accounts for the cavity shift arising from off-resonant
coupling to the atomic transition. The system losses are given by
the effective Liouvillian

Lomρ = −
κ

2

(
a†aρ+ ρa†a− 2aρa†

)
−
γ

2

g20

δ20 +
γ2

4

(
u2(x)a†aρ+ ρa†au2(x) − 2au(x)e−ikcxρeikcxu(x)a†

)
,

(3.10)

which describes the broadening of the cavity linewidth due to
atomic spontaneous emission,

κ(x) = κ+ γ
g20

δ20 +
γ2

4

u2(x). (3.11)

Aside from Appendix A.7, where we discuss in greater detail the
corrections to and limitations of the effective model, we will work
in regimes where the atomic contribution is negligible compared
to the (large) bare cavity linewidth.

In typical treatments of optomechanical systems, the position-
dependent shift in Eq. (3.9) would only be treated to linear order in
the displacement, with the justification that the maximum possible
displacement is very small. However, for atoms, the zero-point
motion can be comparable to the optical wavelength (the scale
over which u(x) varies), a ratio that can be characterized by the
Lamb-Dicke parameter ηLD ≡ kcxzp =

√
ωrec/ωm. For example,

taking a recoil frequency ωrec ==  hk2c/(2m) = 2π× 6.8 kHz, which
relates the resonant wavevector kc and atomic mass m of a 40Ca+-
ion, and a trap frequency of ωm = 2π× 0.1MHz results in ηLD =√
ωrec/ωm ≈ 0.26. For ηLD ∼ 1, the atomic wavepacket would
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have significant weight both in a cavity anti-node and node, with
an associated cavity frequency shift of

gom = −
g20δ0

δ20 +
γ2

4

(3.12)

and zero, respectively. As our perturbative treatment is valid for
δ0 & g0 (see Appendix A.7), one sees that strong optomechanical
coupling gom & κ can be achieved if the strong coupling regime
of conventional cavity QED (g0 > κ) is realized. The standard op-
tomechanical Hamiltonian (linearized in displacement) describing
interactions between single photons and single phonons is given
by Homs = gm(b† + b)a†a, where gm = ∆ ′c(x0)xzp ∼ gomηLD. Thus,
in order to achieve strong optomechanical coupling on the single-
photon, single-phonon level (gm & κ), additionally a sufficiently
large Lamb-Dicke parameter ηLD is required. Given the above con-
siderations, we next derive an effective master equation for the
atomic motion alone that is valid for strong and nonlinear optome-
chanical coupling, which can be viewed as a generalization of the
typical optically-induced cooling and heating rates obtained for lin-
earized optomechanical coupling [92, 93, 105]. Our master equation
also complements previous work investigating intra-cavity optical
forces on atoms in the semi-classical limit [81, 82, 109–111].

3.3.2 Effective Master Equation for Motion

Starting with Eq. (3.7) we can use the Nakajima-Zwanzig technique
to effectively eliminate the cavity degrees of freedom (Appendix
A.5.2). Here, for simplicity we assume that spontaneous emission
can be ignored. The resulting master equation for atomic motion
in conventional Lindblad-form is then given by:

ρ̇ = −i[Hm, ρ] −
1

2

(
J†Jρ+ ρJ†J

)
+ JρJ†. (3.13)

The Hermitian Hamiltonian and jump operators are given respec-
tively by

Hm = ωmb
†b+

κrE
2
0∆c(x)

∆2c(x) +
κ2

4

(3.14)

and

J =
i
√
κκrE0

∆c(x) + iκ2
. (3.15)

We will provide an intuitive picture of this master equation in
Sec. 3.5. Now we focus on the effective mechanical potential which
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Figure 3.3: Quantum and classical mechanical potential arising from a
coherently driven cavity mode
Real part Re[V(x)] (blue) and imaginary part Im[V(x)] (red) of
the quantum potential Eq. (3.18) as a function of position. Also
plotted is the classical potential U(x) (dashed, green) derived
by integrating the expectation value of the force acting on the
atom. One can observe that the real part of the quantum po-
tential is significantly different from the classical expectation
value. Here, we choose a laser frequency ωL such that the res-
onant position kcxr = π/4, and Jaynes-Cummings parameters
of g0/κ ∼ 20 and δ0 = −2g0 (yielding an effective optome-
chanical coupling strength of gom ∼ 10κ). The potentials are
plotted in units of  h(κr/κ)E

2
0.

arises in the Hamiltonian. We can always rewrite a master equation
in terms of an effective non-Hermitian Hamiltonian Hc which then
contains a complex potential:

ρ̇ = −i(Hcρ− ρH†c) + JρJ
† (3.16)

Hc = ωmb
†b+ V(x) (3.17)

with

V(x) =
κrE

2
0∆c(x)

∆2c(x) +
κ2

4

−
i
2
J†J. (3.18)

The real and imaginary parts of the complex potential V(x) are
illustrated in Fig. 3.3. As the resonance frequency of the cavity
depends on the position of the atom, there can be atomic posi-
tions for which the cavity is resonant with the coherent drive.
These positions xr are called resonant positions and are defined by
∆c(xr) = 0. Around these positions, the real part of the potential



56 siba quantum

changes sign and the imaginary part has sinks indicating increased
heating around those positions.

It is also interesting to compare the “coherent” potential, Re[V(x)],
with the classical potential U(x) as derived from the average force
F(x) = d〈p〉/dt = Tr(pρ) on the atom, and defined via dU/dx =

−F(x). The result is given by

U(x) = −2
κr

κ
E20 arctan

(
2∆c(x)

κ

)
, (3.19)

which agrees with our previous, completely classical analysis of a
dielectric object trapped in a cavity in Chapter 2 (see Eq. (2.8)). The
potential is illustrated in Fig. 3.3. For large gom/κ, U(x) is seen to
approach a square well, with the walls of the well aligning with the
resonant positions ∼ xr where the large intracavity field results in
a large classical restoring force. By comparing V(x) and U(x), it is
clear that a significant contribution of the average force must arise
from the stochastic process associated with the quantum jumps J.
As one consequence, although it would be highly interesting to
realize a square well for atoms (leading, e.g., to a highly anharmonic
phonon spectrum), the direct quantization of U(x) in this case is
not meaningful.

3.4 single-photon scattering theory : optomechani-
cal strong coupling with unresolved sidebands

A complementary physical picture of the optomechanical coupling
between an atom and cavity can be gained by considering not a
coherent external drive, but single incident photons. From Eq. (3.7),
the effective non-Hermitian Hamiltonian associated with an un-
driven system is

Heff = ωmb
†b− (∆c(x) + i

κ

2
)a†a (3.20)

where ∆c(x) = ωL −ωc(x) is the position-dependent detuning
between photon frequency ωL and cavity frequency ωc(x) = ωc −
gomu

2(x). To be specific, we will consider single photons incident
through the left mirror (see Fig. 3.2), which has a decay rate back
into the reflection channel of κr. The right mirror is coupled to the
controlled transmission channel with κt. The total cavity linewidth
is thus κ = κr + κt. For simplicity we ignore here an intrinsic loss
rate, although it is straightforward to include later on.

A connection can be made between the eigenstates of Heff and the
properties of single-photon scattering via the S-matrix formalism.
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Formally, the S-matrix describes a coherent evolution mapping an
input state (t = −∞) to an output state (t = +∞):

|Ψout(ωL)〉 = S |Ψin(ωL)〉 . (3.21)

Here, we assume a single monochromatic photon with frequency
ωL incident on the left cavity mirror

|Ψin(ωL)〉 = |(ωL)left, 0〉 , (3.22)

whereas the optomechanical system initially is in its ground state
represented by the second entry in the ket state. Generically the
output state will consist of a superposition of n phonons in the
mechanical state, which were excited by the incoming photon, and
an outgoing photon of energy ωL − nωm in either the reflection
port (r) or transmission port (t):

|Ψout(ωL)〉 =
∑
n

Sr,n(ωL) |(ωL −nωm)r,n〉

+
∑
n

St,n(ωL) |(ωL −nωm)t,n〉 . (3.23)

Due to a connection between the scattering matrix and the Heisen-
berg input-output operators [112] one can express the S-matrix
elements in terms of the eigenvalues λβ and eigenstates |β〉 of the
effective Hamiltonian Heff [113]. We provide a detailed derivation
of the S-matrix elements in Appendix A.6. In reflection, the output
consists of a superposition between a non-interacting propagating
photon (δn,0) and photon emission from the excited optomechani-
cal system:

Sr,n(ωL) = δn,0 + iκr
∑
β

〈1c,n|β〉 1
λβ
〈β|1c, 0〉. (3.24)

Here, 〈1c,n|β〉 is the projection of the eigenstates |β〉 onto the basis
states 〈1c,n| with 1c referring to a single photon inside the cavity
mode. Similarly, the matrix elements for photon transmission are
given by

St,n(ωL) = i
√
κtκr

∑
β

〈1c,n|β〉 1
λβ
〈β|1c, 0〉. (3.25)

The matrix element for photon transmission lacks the contribution
from the non-interacting propagating photon as the input channel
on the transmitting side of the cavity is in the vacuum state. To
proceed further, we assume in the following that a detector cannot
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effectively resolve the frequency of the outgoing photon. Then, we
can effectively write the outgoing state as

|Ψout(ωL)〉 = Sr(ωL, x)Ψ0(x) |1r〉+ St(ωL, x)Ψ0(x) |1t〉 , (3.26)

where |1r/t〉 indicates an outgoing reflected/transmitted photon,
respectively, and Ψ0(x) is the initial motional wave function of the
atom. The entanglement between the photon frequency and the
motional state has been suppressed, as we have assumed that any
projective measurement of a photon in either port is not frequency-
resolving. Furthermore, we now assume that we operate in the
sideband-unresolved limit κ � ωm. The Hamiltonian Heff is ap-
proximately diagonal in the position basis, as the optomechan-
ical interaction dominates over the free Hamilontian ωmb†b in
Heff (Eq. 3.20). Thus, the eigenvalues of Heff are approximately
λ ≈ −∆c(x) − iκ2 and the scattering matrix elements can be simply
written as

Sr(ωL, x) = 1−
iκr

∆c(x) + iκ2
(3.27)

and

St(ωL, x) = −
i
√
κtκr

∆c(x) + iκ2
. (3.28)

As the shape of the mechanical wave function after the decay of
a single photon into one specific channel is the product between
the corresponding S-matrix element and the initial wave function
Ψ0(x), we observe that the shape of the mechanical wave function
after one such scattering event is strongly entangled with whether
the decaying photon is reflected or transmitted.

3.5 connection between scattering theory and mas-
ter equation

Motivated by the observation that the scattering matrices St and
Sr of Eqs. (3.27) and (3.28) are very similar to the jump operators J
(Eq. 3.15), we express the master equation (3.13) in a way that its
jump operators correspond to the single photon scattering matrices:

ρ̇ = −i(Hsρ− ρH†s) + E
2
0(SrρS

†
r + StρS

†
t) (3.29)

with the Hamiltonian

Hs = ωmb
†b−

i
2
E20. (3.30)
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Written in this form the connection between scattering theory and
jump formalism becomes clear. The non-Hermitian term in Hs
describes the rate that quantum jumps are applied to the motional
wave function, which corresponds to the rate E20 of incident pho-
tons on the cavity. The jump operators themselves, Jr/t = E0Sr/t,
with (J†rJr + J

†
tJt = E

2
0), are proportional to the single-photon scat-

tering matrix elements in reflection and transmission, encoding
the two processes by which the original wave function can change
by becoming entangled with a scattered photon. Interestingly, the
coherent part of the potential, Re[V(x)] in Eq. (3.18), is seen to
arise from the term SrρS

†
r in Eq. (3.29), and specifically from the

interference between the incident and scattered components (first
and second terms on the right of Eq. (3.27), respectively).

3.6 quantum effects due to zero-point motion

We have already seen that the scattering of a single photon on
a cavity containing an atom leads to an entangled output state
(3.26). This output state describes the coexistence of the possibil-
ities of photon reflection and photon transmission and how the
wave function of the atom gets modified for each of those events.
We now proceed to describe some of the relevant observational
consequences.

We can expand the position-dependent cavity detuning around
a resonant position xr (defined by ∆c(xr) = 0) until linear order:

∆c(x) ≈ δc + gomu
2(xr) − gom sin(2kcxr)kc(x− xr). (3.31)

This is a good approximation in the Lamb-Dicke regime ηLD � 1.
In order to predict observables, linearizing displacement is also
a good approximation for gom � κ, even if ηLD ∼ 1, since then
the cavity frequency shifts out of resonance for displacements
kcδx� 1. The term sin(2kcxr) indicates that the cavity frequency
is most sensitive to displacements if kcxr = ±π/4, halfway between
a cavity node and anti-node. Then it can be seen that if the atomic
wave function is centered around kcx0 = kcxr = π/4, the cavity
frequency shifts by a linewidth κ, if the atom moves a distance
of kcR = κ/gom. As the transmission/reflection of a single, near-
resonant photon changes significantly as its frequency varies over
a cavity linewidth, R can be viewed as the spatial resolution over
which the single photon "learns" about the atomic position via its
scattering direction. We will now define the zero-point resolution

rzp ≡ (2xzp)/R = (2gm)/κ, (3.32)
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Figure 3.4: Reflection spectrum pr as a function of laser frequency ωL.
Here, we take critical coupling (κr = κ/2) and a trap equilib-
rium position of kcx0 = π/4. We assume the initial atomic
wave function is in the motional ground state.
a) If the zero-point motion is unresolved, the reflection spec-
trum (blue) just behaves like the reflection spectrum of an
empty cavity (green, dashed) but is shifted to a new resonance
ωc(x0). Here we choose gom = κ and ηLD = 0.01, implying
rzp = 0.02.
b) If the zero-point motion is resolved, the reflection spectrum
is broadened by roughly gm and becomes shallower. Here we
choose gom = 5κ and ηLD = 0.2, implying rzp = 2.

with gm = gomηLD being the single-photon, single phonon coupling
strength as defined in Sec. 3.3.1. The zero-point resolution tells us
how much finer the resolution of an incident photon is compared
to the width of the atomic wave function. It distinguishes two
regimes: unresolved zero-point motion rzp � 1, which corresponds
to the usual regime of weak optomechanical interactions, and the
resolved zero-point motion regime rzp � 1, where the resolution
of the system becomes smaller then the zero-point motion, which
is until now unexplored and which gives rise to novel effects as we
will demonstrate in the following.

3.6.1 Influence of the zero-point motion on the reflection spectrum

Here, we assume the atom to be initially in its motional ground
state Ψ0(x) ∝ e−

1
4 (x−x0)

2/x2zp with a trap equilibrium kcx0 = π/4

and κr = κ/2 (critical coupling). The spectrum of reflection, as a
function of the incident photon frequency ωL, is then given by

pr(ωL) =

∫
dx|Sr(ωL, x)|2|Ψ0(x)|2. (3.33)

Fig. 3.4a) shows pr as a function of cavity detuning δc = ωL −ωc
for rzp � 1 (unresolved zero-point motion). The green dashed line
is the reflection spectrum of an empty cavity with decay rate κ. The
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Figure 3.5: Resolution beyond zero-point uncertainty
a) For rzp = 2, the spatial width ∼ 2xzp of the atomic proba-
bility density |Ψ0(x)|

2 (blue) exceeds the spatial resolution R,
which corresponds to the width of the absolute value of the
scattering matrix |Sr(x)|

2 (red dashed). As the cavity is only
resonant with an incoming photon if the atom is located within
R, there is a large probability that the cavity is off-resonant,
even though ωL = ωc(x0). The probability of reflection is
calculated by the overlap of both plotted functions.
b) Same as a), but with the absolute value of the S-matrix for
transmission (red, dashed).
c) Probability of photon reflection pr (red) and transmis-
sion pt (green) as a function of zero-point resolution rzp,
for an incident photon that is resonant with the cavity in
the limit that atomic motion fluctuations are ignored (i.e.,
δc = −gomu

2(x0)). One sees that for large rzp, the probability
of transmission becomes negligible, because the probability
of finding the atom within R (which would imply a resonant
system and consequent transmission) approaches zero for
rzp � 1.



62 siba quantum

blue solid line is calculated with Eq. (3.33) for rzp = 0.02, where
pr ≈ |Sr(ωL, x0)|2. One can see that it exhibits the same Lorentzian
response as an empty cavity, but with a resonance frequency shifted
by −gomu

2(x0). Fig. 3.4b) shows the reflection spectrum pr for re-
solved zero-point motion rzp = 2. We observe that the probability
of reflection is strongly increased for δc = −gomu

2(x0), compared
to the case of small rzp. This behavior can be understood from
Eq. (3.31). In particular, the resonance frequency of the coupled
atom-cavity system depends on the position of the atom, and
δc = −gomu

2(x0) corresponds to the resonance of the most likely
atomic position. However, the large spread of the atomic wave
function results in a large uncertainty of the resonance frequency,
which increases the reflection probability. Conversely, an incident
photon with frequency far from δc = −gomu

2(x0) sees a decreased
reflection probability (thus the broadening of the spectrum), as
there is some chance that the spread in atomic position allows the
coupled system to be on resonance with the photon. This is illus-
trated in Fig. 3.5a), where we plot the atomic probability density
|Ψ0(x)|

2 (blue) and the absolute value of the reflection S-matrix
|Sr(x)|

2 (red dashed) (Eq. 3.27) as a function of position x and for
rzp = 2. One can see, that the width of the atomic wave function
∼ 2xzp exceeds the spatial resolution R, within which the cavity is
resonant. For completeness, we also provide a plot of the absolute
value of the transmission S-matrix |St(x)|

2 (red dashed) in Fig. 3.5b).
Fig. 3.5c) shows the probability of reflection and transmission for
δc = −gomu

2(x0) as a function of rzp. For rzp � 1 the probability
of reflection vanishes and the transmission approaches unity as it
would for an empty resonant cavity. However, with increasing rzp

it becomes less likely to find the atom within the spatial resolution
R within which the cavity is resonant, leading to an increase of pr.
Finally, the reflection probability pr approaches unity for rzp � 1.

Most of this plot is already experimentally accessible with current
technology. For example a neutral atom trapped in its ground state
inside photonic crystal cavities can reach rzp ∼ 10 (Appendix A.8.1)
whereas a current fiber cavity experiment reaches rzp ∼ 1 (Appendix
A.8.2). While measuring pr, the zero-point resolution rzp can then
be gradually decreased by increasing the atom-cavity detuning
ω0 −ωc, increasing trap frequency ωm or by moving the trap
equilibrium x0 away from the position of maximal optomechani-
cal coupling kcx0 = ±π/4. This procedure would experimentally
reproduce parts of Fig. 3.5c).



3.6 quantum effects due to zero-point motion 63

Figure 3.6: Illustration of a single-photon scattering event for resolved
zero-point motion
a) Input state: An incident photon (green) with a frequency en-
suring x0 = xr is flying towards a cavity containing a trapped
atom with probabilitiy density |Ψ0(x)|

2 (black). Due to its zero-
point uncertainty, the system is in an effective superposition of
resonance frequencies. This input state is given by Eq. (3.22).
b) Output state: Illustration of the entangled output state
given by Eq. (3.26), which is a superposition of the photon
being reflected, which implies an off-resonant system and a
photon being transmitted, which implies a resonant system.
The plotted probability densities |Ψr/t(x)|

2 are the normal-
ized product of |Ψ0(x)|2 and the respective scattering matrix
|Sr/t(x)|

2 of Fig. 3.4a) and 3.4b), where rzp = 2. For this value,
the probability of reflection is pr ≈ 0.56.

3.6.2 Entanglement and conditional projection of the atomic wave func-
tion

Having previously investigated the unconditional reflection spec-
trum of an incident photon, we now study more carefully the
correlations that build up between the atomic motion and photon
reflection or transmission for the case when the trap equilibrium
falls at the resonant position (x0 = xr). As the atom is in a coherent
superposition of being within the spatial resolution R and not, and
an incoming photon gets transmitted if the atom is within that
spatial resolution and reflected if otherwise, the resulting state
(Eq. 3.26) is entangled. Given that the photon has been transmitted,
the normalized conditional wave function is given by

Ψt(x) = p
−1/2
t St(x)Ψ0(x). (3.34)
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Its probability density is propotional to the product of |Ψ0(x)|2 and
|St(x)|

2 as individually drawn in Fig. 3.5b). Thus, for rzp � 1, the
transmission of a photon projects the atom into a narrow spatial
region ∆x ∼ 1/R around the resonant position, which is consistent
with the photon having seen a resonant cavity response.

In contrast, the reflection of a photon projects the atom away from
that same spatial region, which results in a hole around xr with
width ∆x ∼ 1/R. This is consistent with the photon having seen an
off-resonant cavity. The normalized conditional wave function after
a photon reflection is then given by

Ψr(x) = p
−1/2
r Sr(x)Ψ0(x). (3.35)

As individually drawn in Fig. 3.5a), its probability density is propo-
tional to the product of |Ψ0(x)|2 and |Sr(x)|

2. Fig. 3.6a) shows an
illustration of the unentangled input state. The atom (black) is in
its motional ground state, centered around x0 = xr, while a sin-
gle photon (green) is incident and resonant with the atom-cavity
system for this position. In Fig. 3.6b) we illustrate the entangled
output state for rzp = 2. We illustrate how the transmission or
reflection of a photon are entangled with atomic wave functions
Ψt(x) or Ψr(x) consistent with the respective scattering process, for
the same parameters as in Figs. 3.4a) and b).

Interestingly, in the unresolved zero-point motion regime rzp � 1

the scattering matrix for reflection is proportional to x: Sr(x) ≈
−2ix/R. This leads to a final conditional wave function Ψr(x) ∝
xΨ0(x) which corresponds to a single-phonon Fock state. This
represents the high-fidelity generation of a single-phonon Fock
state, which is heralded on detection of a reflected photon (the
probability of a single photon being reflected itself is quite low,
pr ≈ r2zp). This approach is distinct from previous proposals for
heralded generation, involving the detection of a Stokes-scattered
photon in the sideband resolved regime [114].

The wave function after a transmission/reflection event adjusts
in a way that it increases the probability of a subsequent transmis-
sion/reflection. To demonstrate this, we calculate the conditional
probability of photon transmission given that a photon has just
been transmitted:

p(t|t) =
1

pt

∫
dx|St(x,ωL)|4|Ψ0(x)|2. (3.36)

Fig. 3.7a) shows p(t|t) (green) as a function of cavity detuning
δc for a fixed trapping position kcx0 = π/4. We plot the corre-
sponding probability of transmission pt (blue) as well, which is



3.6 quantum effects due to zero-point motion 65

seen to be lower than the conditional probability. We use param-
eters of an existing fiber cavity QED experiment with trapped
40Ca+-ions (Appendix A.8.2II). We chose ωm = 2π× 50 kHz and
ω0 −ωc = 4g0. The asymmetry of p(t|t)) is due to the nonneg-
ligible dependence of gom (Eq. (3.12)) and κ(x0) (Eq. (3.11)) on
the laser frequency ωL (and thus δc) for those parameters. For
2δc/κ = −(2gom/κ)u

2(x0) ≈ −1.2 (which implies xr = x0) a zero-
point resolution of rzp ≈ 0.89 is obtained, which needs to be cal-
culated with Eq. (A.65) as here spontaneous emission cannot be
neglected. As one consequence of the higher likelihood of condi-
tional transmission, the second-order correlation function g(2)tt (0) =
1
p2t

∫
dx|St(x,ωL)|4|Ψ0(x)|2 of the transmitted field, given a weak

coherent input state, would exhibit bunching, as shown in Fig. 3.7b).
Likewise, as reflection of a first photon suppresses the probability of
transmitting a second photon (and vice versa), second-order corre-
lations g(2)rt (0) = 1

ptpr

∫
dx|St(x,ωL)|2|Sr(x,ωL)|2|Ψ0(x)|2 between

the reflected and transmitted field would exhibit anti-bunching
(Fig. 3.7c)).

3.6.3 Motional heating induced by entanglement

Each projection of the atomic wave function is associated with
an increase in energy. We will now show that this energy can
vastly exceed the energy added in free space or in a trap. In free
space a recoil momentum  hkL results in a kinetic energy change
of ωrec (typically a few kHz). In a stiff trap (ωrec � ωm) it is
unlikely that a phonon can be excited due to the insufficient energy
associated with the recoil. In that case, it is well-known [115, 116]
that the probability of exciting a phonon due to single-photon
scattering is suppressed as ωrec/ωm = η2LD. However, here we
show that for atoms trapped inside cavities, and in the regime of
strong optomechanical coupling, it is possible for a single scattered
photon to produce a much larger heating effect, even when the
atom is trapped tightly within the Lamb-Dicke limit (ηLD � 1).
The origin of this effect can already be inferred from Fig. 3.6b),
where the post-scattering atomic wave function is seen to be far
from the original ground-state wave function due to the narrow
spatial features induced by scattering.

In Fig. 3.8a we plot the conditional expectation values n̄r/t =

〈Ψr/t|b
†b |Ψr/t〉 of created phonons as a function of rzp after mea-

suring a reflected/transmitted photon, respectively. For these plots
we assume the atom to be initially in its ground state and that the
resonance position matches with the trap equilibrium (xr = x0).
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Figure 3.7: Photon statistics due to wave function projection for a fixed
trapping position kcx0 = π/4.
a) Probability of photon transmission pt (blue) as a function
of cavity detuning δc and the conditional probability of trans-
mission, given that a photon just has been transmitted p(t|t)
(green). We observe that a transmitted photon increases the
probability of transmitting again.
b) The second-order correlation function g(2)tt (0) of the trans-
mitted field as a function of δc shows bunching due to the
decay channel reinforcing nature of the wavefunction projec-
tion caused by the first photon.
c) The second-order correlations g(2)tr (0) between the trans-
mitted and the reflected field as a function of δc shows anti-
bunching.
Here we use parameters of an existing fiber cavity QED
experiment with trapped 40Ca+-ions with recoil frequency
ωrec = 2π× 6.8 kHz (see Appendix A.8.2I). The parameters
are g0 = 2π× 41MHz, γ = 2π× 11.2MHz, κ = 2π× 8MHz.
We chose ωm = 2π× 50 kHz and ω0 −ωc = 4g0. These val-
ues correspond to a zero-point resolution of rzp ≈ 0.89 for
2δc/κ ≈ −1.2 (calulated with Eq. (A.65)).
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Figure 3.8: Added phonons per photon
We assume critical coupling, the atom to be initially trapped in
its ground state and that the resonance position matches with
the trap equilibrium (xr = x0). a) Conditional expectation
values of created phonons after scattering a single photon
n̄r/t. We find the scalings n̄r ≈ 1 for rzp � 1 and n̄r ∝ rzp

for rzp � 1 and n̄t ∝ r2zp for all values of rzp, leading to a
very large number of added phonons for resolved zero-point
motion in the case of a measured transmitted photon. b) Total
expectation value n̄ (unconditional) of added phonons per
photon as a function of rzp. The scalings n̄ ∝ r2zp for rzp � 1

and n̄ ∝ rzp for rzp � 1 originate from the combination of a)
and Fig. 3.5c), as n̄ = ptn̄t + prn̄r.

We find that n̄r ≈ 1 for rzp � 1, which reflects the fact that the re-
sulting conditional wave function in this regime is a single-phonon
Fock state, as explained in Sec. 3.6.2. For rzp � 1 we observe a
scaling of n̄r ∝ rzp, whereas n̄t ∝ r2zp for all values of rzp. We
now want to give the intuition behind these scalings. Generally, the
number of created phonons is the energy increase normalized with
trap frequency: n̄ = ∆E

ωm
. The main contribution of added energy

comes from the increase in momentum uncertainty, due to the nar-
row spatial features associated with the conditional wave functions
after photon scattering (see Fig. 3.6b)). Thus, the added energy after
one scattering event is approximately ∆E ≈ 〈Ψ|p2|Ψ〉

2m . Transmitting
a photon localizes the atomic wave function around the resonant
position xr up to an uncertainty of ∆x ∼  h/∆p ∼ 1/rzp, which yields
a kinetic energy increase corresponding to n̄t ∝ r2zp. The scaling
n̄r ∝ rzp for rzp � 1 is best understood for the case κt = 0 (but the
argument holds generally). There, the photon experiences a phase
shift Φ(x) = arg[Sr(x)] ≈ arctan[(2(x − xr)R)/(R2 − (x − xr)

2)]

which depends on the atomic position. Φ(x) only varies signif-
icantly for displacements smaller than δx . R ∝ 1/rzp and its
slope reaches a maximum value of Φ ′(xr) ∝ rzp. The phase shift
dominates the contribution to the added kinetic energy, n̄r ∝
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〈Ψ|p2 |Ψ〉 ∝
∫
dx|Ψ0(x)|

2(Φ ′(x))2 ∝
∫
dx(Φ ′(x))2 ∝ r2zp/rzp = rzp

as for rzp � 1, (Φ ′(x))2 peaks over a region much smaller than
the width of the wavefunction, and has a width of ∝ 1/rzp and a
maximum value of ∝ r2zp.

In Fig. 3.8b) we plot the unconditional number of added phonons
per photon n̄ (the photon is not measured after the interaction). As
it is given by n̄ = ptn̄t + prn̄r, it can be understood as a combina-
tion of Figs. 3.8a) and 3.5c). Thus, the scaling of n̄t dominates for
rzp � 1, whereas the scaling of n̄r dominates for rzp � 1.

3.6.4 Conclusion

We have presented the theory of strong optomechanical coupling
in nano/micro-cavities, where naturally the mechanical sidebands
are unresolved. Possible candidate platforms are trapped atoms
or ions in photonic crystal cavities or fiber cavities. We show that
these platforms already reach a regime where the atomic zero-point
motion is resolved by incident photons, leading to strong entan-
glement between the photon and the atomic motion. Signatures of
this entanglement can be measured in the reflection spectrum, the
2nd order photon correlation function or in the number of added
phonons per photon. Furthermore, we showed that one can create
non-Gaussian motional states from Gaussian states conditioned
upon reflecting a single photon, even for unresolved zero-point
motion. Generally we want to emphasize that the presented theory
is relevant to any experiment where atoms are strongly coupled to
cavities with small mode volumes.



4
R E A C H I N G T H E O P T O M E C H A N I C A L S T R O N G
C O U P L I N G R E G I M E W I T H A S I N G L E AT O M I N A
C AV I T Y

4.1 introduction

In the previous chapter, we showed how cavity QED experiments in
the strong coupling regime are natural and attractive platforms to
explore the single-photon, single-phonon strong coupling regime
of optomechanics. While Chapter 3 focused on the strong cou-
pling regime in the sideband unresolved limit, here we consider
the sideband resolved limit. We note again (see Sec. 1.3.2) that
attaining this limit represents a holy grail of optomechanics, as it
effectively allows for the generation of non-classical states of light
through strong motion-mediated photon-photon interactions. In
particular, it has been theoretically shown that this regime enables
optomechanically induced photon blockade [45], where only single
photons can transmit through the cavity at a time.

In this Chapter, we show theoretically that one can observe op-
tomechanically induced photon blockade [45] in realistic cavity
QED setups, where a non-classical anti-bunched field is produced
as the system is unable to transmit more than a single photon
at a time. We also describe how this optomechanical behavior
can be clearly distinguished from, and dominate over, the usual
anti-bunching associated with the two-level nature of the atom.
The explicit use of the strong coupling regime of cavity QED to
attain novel regimes of optomechanics, and the examination of
the resulting non-classical statistics of the outgoing field, distin-
guish the present work from previous experiments that explored
optomechanical effects with atomic ensembles in cavities [60, 61,
84].

4.2 optomechanical photon blockade

We begin by reviewing the phenomenon of photon blockade in
a conventional optomechanical system. We focus on the system
shown in Fig. 4.1a), where a mechanical element such as a trapped
particle [19–21, 117, 118] or membrane [42] can be positioned ar-
bitrarily, and couples to a single standing-wave optical mode of

69
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a Fabry-Perot cavity. For small displacements of the mechanical
degree of freedom around the equilibrium position x0, the cavity
frequency is given by ωc(x) ≈ ωc(x0) +ω ′c(x0)(x− x0). The total
Hamiltonian of the system, including a coherent external driving
field, is given in a frame rotating with the laser frequency ωL by

Hop = ωmb
†b− (ωL −ωc(x0) + i

κ

2
)a†a

+ gm(b+ b†)a†a+

√
κ

2
E0(a

† + a). (4.1)

Here, ωm is the frequency of the vibrational mode, and a and b
denote the photon and phonon annihilation operators, respectively.
The quantity ωL −ωc(x0) is the detuning between laser frequency
ωL and the cavity frequency ωc(x0) when the mechanical system
lies at its equilibrium position. Each cavity mirror has a decay rate
of κ/2 into outgoing radiation, while the left side also serves as
the source of injection of a coherent state into the cavity with pho-
ton number flux E20. The position-dependent cavity shift described
previously has been re-written in terms of phonon operators as
ω ′c(x0)(x− x0) = gm(b+ b†) where gm = ω ′c(x0)xzp is the single
photon-phonon coupling strength and xzp =

√
 h/(2meffωm) is the

zero-point motional uncertainty (meff being the effective mass). The
cubic interaction term (b+b†)a†a gives rise to nonlinear equations
of motion, but quantum signatures have not been observed, as the
best ratio of coupling strength to linewidth so far is gm/κ ∼ 10−2 [8,
9]. Thus, current experiments remain in the so-called optomechani-
cal weak coupling regime, where many photons inside the optical
mode are required to see an appreciable interaction, and allowing
for linearization around the strong classical cavity field. However,
here we will focus on the regime where this linearization breaks
down and the nonlinear nature of the optomechanical coupling
manifests itself via photon coincidence measurements [45].

To quantify the optomechanical nonlinearity we change into a
displaced oscillator representation, which diagonalizes Hop in the
limit of weak driving [45]. The eigenvalues as E0 → 0 can then be
written as En,m = mωm +nωc(x0) −

g2m
ωm
n2and correspond to the

(displaced) eigenstates |n,m〉. The spectrum is shown in Fig. 4.1b).
If the laser frequency is resonant with the transition |0c, 0〉 → |1c, 0〉
(zero phonon line ≡ ZPL) then the transition for the second photon
is off resonant from the transition |1c, 0〉 → |2c, 0〉 by an amount
E2,0 − 2E1,0 = −2g2m/ωm. In order to have a substantial effect, this
anharmonicity should be resolvable, g2m/ωm & κ, and furthermore,
one should operate in the sideband resolved regimeωm & κ so that
transitions to other motional states, e.g., the first phonon sideband
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|0c, 0〉 → |1c, 1〉 are suppressed. These requirements for antibunch-
ing can also be observed in Fig. 4.1c), where we have plotted the
second-order correlation function g(2)(0) of the transmitted field
given a weak coherent state input for different values of κ and gm,
taking the laser frequency ωL as being resonant with the ZPL.

Formally, the quantum properties of the transmitted field are en-
coded in the input-output relation aout(t) = ain(t) +

√
κ/2a(t). As

the external driving field is injected through the other mirror, the
input field in the transmitted port is the vacuum state, and thus the
second-order correlation function g(2)(0) = 〈(a†out)

2a2out〉/〈a
†
outaout〉2 =

〈(a†)2a2〉/〈a†a〉2 depends only on the intra-cavity field. We numer-
ically calculate the necessary expectation values from the system
wavefunction |Ψ(t)〉 =

∑
n,m cn,m(t) |n,m〉 (where n denotes the

photon number and m the phonon number), which we truncate
for nmax > 2 (given that a sufficiently weak input state is unlikely
to generate more than two cavity photons), and mmax depending
on convergence. In the case of the pure optomechanical Hamil-
tonian Hop, we solve for the steady-state amplitudes cn,m from
the effective Schroedinger equation i |Ψ̇(t)〉 = Hop |Ψ(t)〉. Then,
〈a†a〉 =

∑
m |c1,m|2 + 2|c2,m|2 and 〈(a†)2a2〉 =

∑
m 2|c2,m|2. Note

that we neglect mechanical damping as our true subspace of in-
terest consists of trapped atoms. Formally, the inclusion of cavity
dissipation in the effective wavefunction evolution must be supple-
mented with stochastic quantum jumps [26]. However, in the weak
driving limit E0 → 0 that we consider here, the effect of jumps on
observables becomes vanishingly small and thus we do not need
to explicitly account for them. While we have explicitly discussed
the optomechanical Hamiltonian Hop here, the cases of the Jaynes-
Cummings model without motion or Jaynes-Cummings model
including motion are solved in an immediately similar fashion in
the following.

A value of g(2)(0) < 1 indicates non-classical antibunching, and
a minimum value occurs around around gm ≈ 0.5ωm, which for
well-resolved sidebands decreases as g(2)(0) ≈ 20(κ/ωm)2. One
also sees that increasing the ratio gm/ωm further does not improve
the amount of antibunching, due to the possibility of resonantly
coupling to other excited states. For example, at gm/ωm ≈ 1/

√
2,

the reduced antibunching arises as a second photon can resonantly
excite the state |2c, 1〉, since E2,0 − 2E1,0 = −ωm.

While mathematically the degree of antibunching is determined
by the parameters gm,ωm, κ, it will also be helpful to “visual-
ize” how the antibunching changes as the equilibrium position x0
is scanned from a cavity anti-node to node, to provide a useful
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Figure 4.1: Optomechanical photon blockade. a) A membrane with equi-
librium position x0 inside a cavity with intensity mode profile
u2(x), which is driven with number flux E20 from the left. Each
mirror has a decay rate of κ/2. The photons are measured
on the transmitting side of the cavity (right). b) Spectrum
of the optomechanical Hamiltonian Hop for E0 → 0. Here,
|n,m〉 denotes the state with n photons and m phonons. In
this diagram, we focus on transitions involving states with
m = 0 phonons (black lines), while other states (m = 1

shown here) are denoted by gray lines. A laser with frequency
ωL, which is resonant with the transition |0c, 0〉 → |1c, 0〉
(the zero-phonon line), cannot resonantly excite a second
photon |2c, 0〉 as optomechanical interactions shift the rel-
ative energy of this state by an amount 2g2m/ωm. c) Nor-
malized second-order correlation function of the transmitted
field, g(2)(0), as a function of gm/ωm and κ/ωm. d) Top:
g(2)(0) as a function of equilibrium position x0 and detun-
ing from the empty cavity δc = ωL −ωc, normalized by the
trap frequency ωm. The mechanical system is coupled to an
intensity mode profile u2(x) = cos2(kcx), where kc is the
wavevector of the cavity mode. The dashed red/black lines
denote a detuning where the cavity is resonantly driven on
the zero phonon line (ZPL)/first phonon sideband, respec-
tively. Bottom: g(2)(0) along the ZPL. The parameters chosen
for Fig. 4.1d) are gm0 = 2π× 0.16MHz, κ = 2π× 0.02MHz,
ωm = 2π× 0.2MHz.



4.3 cavity qed without motion 73

comparison with atoms later. For a weak dielectric perturbation
such as a thin membrane, intuitively one expects that the varia-
tion in the cavity frequency follows the intensity profile of the
standing wave itself, δωc(x) ∝ − cos2(kcx) [22, 119]. It follows
then that gm(x0) = gm0 sin(2kcx0). In particular, gm(x0) vanishes
at a node or anti-node, and reaches the maximum possible value
of gm0 halfway between. In Fig. 4.1d) we plot g(2)(0) as a func-
tion of trapping position x0 and detuning from the empty cavity
δc = ωL −ωc for a mechanical system initially in its ground state.
The dashed red line corresponds to a driving laser resonant with
the ZPL, which requires the laser frequency to be tuned following
the energy eigenvalue E1,0. In addition to the features along the
ZPL, antibunching can also be observed when a motional sideband
|1c,m〉 is resonantly driven, following the equation |ωL = E1,m〉
(see black dashed curve for m=1). Below, we plot g(2)(0) following
the ZPL (red, dashed). The oscillations in g(2)(0) along the ZPL
versus x0 occur as gm(x0) sweeps into and away from the optimal
values for antibunching (compare with Fig. 4.1c)). Here, we have
chosen parameters of gm0 = 2π× 0.16MHz, κ = 2π× 0.02MHz
and ωm = 2π × 0.2MHz. These do not necessarily correspond
to a physically realizable optomechanical system, but allow the
interesting features to be observed.

4.3 cavity qed without motion

We now consider an atom coupled to a cavity mode with amplitude
u(x) = cos(kcx) (see Fig. 4.2a)), which is described by the Jaynes-
Cummings (J-C) Hamiltonian [104]. Due to the two-level nature
of the atom, the spectrum of the J-C Hamiltonian is nonlinear. We
thus study the effect of this nonlinearity on g(2)(0) first without
motion (i.e., the atom is infinitely tightly trapped), so that we can
later clearly distinguish motional effects. The J-C Hamiltonian, in
an interaction picture rotating at ωL, is given by

HJC =− (δ0 + i
γ

2
)σee − (δc + i

κ

2
)a†a

+

√
κ

2
E0(a+ a

†) + g0u(x0)(a
†σge + h.c.). (4.2)

The laser-atom detuning is δ0 = ωL −ω0 with ω0 being the reso-
nance frequency of the atom, while σ¸˛ = |α〉 〈β|, where α,β = g, e
correspond to combinations of the atomic ground and excited states.
As before, δc = ωL −ωc is the detuning relative to the bare cavity
resonance. The atom-cavity coupling strength g0u(x0) depends on
the trapping position x0, where g0 is the magnitude of the vacuum
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Figure 4.2: Cavity QED without motion. a) Schematic of an atom in-
finitely tightly trapped inside a cavity mode at position x0.
The cavity and atomic excited state decay rates are κ and γ,
respectively. b) Second-order correlation function g(2)(0) of
the transmitted field, as a function of trapping position x0 and
detuning from the empty cavity δc = ωL −ωc, normalized
by the cavity linewidth κ. Here, we restrict ourselves to driv-
ing frequencies near the resonance of the photon-like dressed
state of the Jaynes-Cummings model. To generate this plot,
we take idealized parameters such that antibunching arising
from strong atom-cavity coupling can be easily seen: ∆ = 3g0,
g0 = 2π× 2MHz, κ = γ = 2π× 0.02MHz.

Rabi splitting at the anti-node at the cavity waist. The emission rate
of an excited atom into free space is given by γ.

Ignoring dissipative processes for the moment, the system is
block diagonal for n total excitations in the system, with possi-
ble states |g,n〉 , |e,n− 1〉. The energy eigenvalues in each block

are given by E±n = nωc + (±
√
4g20u

2(x0)n+∆2 + ∆)/2, where
∆ = ω0 −ωc. In the following we consider the dispersive regime
∆ � g0, κ,γ, where the single-excitation eigenstates of the J-C
Hamiltonian are either mostly atomic (|ψ+〉 ≈ |e, 0〉) or photonic
(|ψ−〉 ≈ |g, 1〉). These eigenstates have corresponding eigenener-

gies E+1 ≈ ω0 +
g20
∆ u

2(x0) and E−1 ≈ ωc −
g20
∆ u

2(x0), respectively.
Here, we focus on the case when the system is driven near res-
onantly with the photonic eigenstate. In that limit, the atom can
approximately be viewed as a classical dielectric that provides

a position-dependent cavity shift ∝ g20
∆ . However, the two-level

nature of the atom provides a residual nonlinearity to excite a
second photon, of magnitude E−2 − 2E−1 ≈ 2(g

4
0/∆

3)u4(x0). Such
a nonlinearity results in an anti-bunched transmitted field if it is
comparable to the cavity linewidth κ. In Fig. 4.2b) we plot g(2)(0)
for ∆ = 3g0, as a function of atom position x0 and detuning δc,
for frequencies around the photonic eigenenergy E−1 (dotted line).
Here, we have chosen idealized parameters g0 = 2π × 2MHz,
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κ = γ = 2π× 0.02MHz, which enable the antibunching features to
be clearly seen. Without motion, the largest degree of antibunching
naturally occurs around the anti-node (x0 = 0) and monotonically
decreases as one approaches the nodes.

4.4 full model : cavity qed with motion

We now include atomic motion into the Jaynes-Cummings Hamil-
tonian H = ωmb

†b + HJC by treating x0 → x as a dynamical
variable. We assume that the atom sees an internal-state indepen-
dent and harmonic trapping potential, which occurs naturally for
trapped ions or using magic wavelength traps for neutral atoms
[120]. In Fig. 4.3a), we plot g(2)(0) as a function of laser-cavity
detuning δc and the central position x0 of the trap, for parame-
ters g0 = 2π× 10MHz, κ = γ = 2π× 0.02MHz, ∆ = 5g0, ωm =

2π× 0.5MHz, and an atomic recoil frequency ωrec = 2π× 6.8 kHz
corresponding to a 40Ca+ ion. It can be seen that this figure cap-
tures a combination of the pure J-C plot (Fig. 4.2b) and pure op-
tomechanical plot (Fig. 4.1d), where the largest degree of anti-
bunching occurs around the anti-node (x0 = 0) or in between
the node and anti-node, respectively. In particular, the presence
of sideband features, and the extended antibunching away from
the anti-node are qualitative signatures of motional effects. Below
we plot g(2)(0) following the ZPL (red, dashed). The region of
negligible antibunching, g(2)(0) ≈ 1, at kcx0 ≈ ±π/8 originates
from an exact cancellation of the nonlinearities induced by motion
and the two-level nature.

To better understand the contribution from motion, under certain
conditions one can effectively map the J-C model to the optome-
chanical Hamiltonian. In particular, for large laser-atom detunings
δ0 � g0, the atomic ground-state population is approximately one
which allows for an effective elimination of the atomic excited state
[106, 121] using the Nakajima-Zwanzig projection operator formal-
ism [107, 108]. In the Lamb-Dicke regime ηLD =

√
ωrec/ωm =

kcxzp � 1 the effective optomechanical Hamiltonian (4.1) is re-
produced by replacing gm → geff with the effective optomechan-
ical coupling strength geff = g20δ0/(δ

2
0 + γ

2/4)ηLD sin(2kcx0) and
κ → κeff with the effective cavity linewidth κeff = κ+ γg20/(δ

2
0 +

γ2/4)u2(x0), broadened by atomic spontaneous emission (see Sec. 3.3.1
and Appendix A.5.1 for the derivation of the effective optomechan-
ical model: geff = ∆

′
c(x0)xzp with Eq. (3.9) and κeff originates from

averaging κ(x) with the atomic wavefunction in Eq. (3.11)). Note
that δ0 ≈ −∆ for ∆� g0 and when the system is driven resonantly
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Figure 4.3: J-C model including motion. a) Top: g(2)(0) of the transmitted
field versus trapping position x0 and detuning from the empty
cavity δc = ωL −ωc, for detunings near the photonic eigen-
state and for atom-cavity detuning ∆ = 5g0. Here, we use ide-
alized parameters g0 = 2π× 10MHz, κ = γ = 2π× 0.02MHz
, and ωm = 2π× 0.5MHz so that all of the key features can
be clearly observed. Below: g(2)(0) following the ZPL (red,
dashed). b) We plot the same as in Fig. 4.3a), but using the
parameters for a realistic cavity QED experiment given below.
In this figure, we choose ∆ = 12g0 andωm = 2π× 0.1MHz. c)
g(2)(0) as a function of atom-cavity detuning ∆ and trapping
frequency ωm. d) g(2)(0) as a function of trapping position
x0 and trapping frequency ωm for ∆ = 12g0. For Fig. 4.3b),
4.3c) and 4.3d) we choose parameters g0 = 2π × 1.4MHz,
κ = 2π× 0.05MHz, γ = 2π× 11MHz and recoil frequency
ωrec = 2π× 6.8 kHz.
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on the ZPL. For small ηLD, the nonlinearity arising from motion
simply adds to that arising from the two-level nature of the atom,
and the energy spectrum reads

En,m ≈ mωm+

(
ωc −

g20
∆
u2(x0)

)
n+

(
g40
∆3
u4(x0) −

g2eff
ωm

)
n2.

(4.3)

Here, n denotes the number of excitations in the photon-like eigen-
state of the J-C model. Thus, the essential ingredients needed to
observe a quantum nonlinearity associated with the motion are
g2eff/ωm & κeff and ωm & κeff (along with ηLD < 1, such that the
atomic motion can be linearized, see Appendix A.9 for second
order corrections). As the two-level and motional anharmonicities
scale with ∆−3 and ∆−2, respectively, increasing ∆ serves as a way
to make two-level antibunching vanish while nonlinear motional
effects persist. Furthermore, as the maximum allowed value of geff

to retain validity of the effective model is geff ∼ g0, one can see that
the cavity QED strong coupling condition g0 & κ naturally enables
optomechanical strong coupling. Actually, the more conventional
criterion for cavity QED strong coupling, g0 > κ,γ, is not required,
as we illustrate next.

4.5 motional photon blockade in an existing experi-
ment

To present the realistic possibilities of observing optomechanical
blockade, we consider an existing cavity QED setup with trapped
40Ca+-ions [122] with g0 = 2π× 1.4MHz, κ = 2π× 0.05MHz and
γ = 2π× 11MHz. Note that without motion, the large spontaneous
emission rate γ� g0 in this particular setup prevents one from ob-
serving blockade arising from the Jaynes-Cummings ladder when
the atom and cavity are on resonance. Blockade cannot be observed
by working off resonance either, as the nonlinearity in the spectrum
decreases faster (∝ ∆−3) than the atomic contribution to the decay
rate of the cavity (∝ ∆−2). However, optomechanical blockade can
be observed as its nonlinearity decreases also as ∆−2. In Fig. 4.3b)
we plot g(2)(0) as a function of atom position x0 and detuning δc,
for ∆ = 12g0 and ωm = 2π× 0.1MHz, and also for a detuning δc
following the ZPL (red, dashed). As the maximal two-level anhar-
monicity 2(g40/∆

3)u4(0) ≈ 2π× 1.6 kHz� κeff is far from being re-
solved, no photon blockade occurs due to the two-level nature and
thus no antibunching can be seen at the anti-nodes. However, the
motional nonlinearity 2g2eff/ωm ≈ 2π× 15 kHz is almost an order
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of magnitude larger and allows a minimum value of g(2)(0) ≈ 0.83
driving the ZPL (red dotted line) around kcx0 ≈ π/3.

This value actually represents the optimum that can be observed
at this position, scanning over the parameters ωm and ∆/g0 as we
illustrate in Fig. 4.3c). For lower values of ∆, the sideband reso-
lution is lost owing to the large value of the atomic spontaneous
emission rate γ and its contribution to the effective cavity linewidth
κeff (κeff ≈ 2π× 84 kHz at the optimized point). On the other hand,
for increasing ωm, the magnitude of the motional nonlinearity
2g2eff/ωm becomes reduced, while for decreasing ωm again side-
band resolution is lost. Note as well that the anti-bunching is negli-
gible for any detuning, when the motion is frozen out (ωm →∞).
This dependence of g(2)(0) on ωm reveals the pure motional origin
of antibunching. Fig. 4.3d) shows g(2)(0) as a function of atom
position x0 and trap frequency ωm, for ∆ = 12g0 and resonantly
driving the ZPL. Here one again sees that the antibunching occurs
only between the nodes and anti-nodes, and the tradeoff in ωm.

4.6 conclusion

In conclusion, we have shown that cavity QED experiments ap-
proaching the strong coupling regime are natural platforms to
explore the single-photon, single-phonon strong coupling regime
of optomechanics, in the limit that the motional sidebands can be
resolved. Since many of those experiments, which allow for the re-
alization of motional nonlinear effects, already exist, we anticipate
that such platforms will stimulate much theoretical and experimen-
tal work to further explore the generation of non-classical light
from motion and its consequences.
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a.1 frequency shift

Here, in relation with Chapter 2, we derive the frequency shift of
a cavity due to the presence of a dielectric particle. For small fre-
quency shifts δωc(xp) = ωc(xp) −ωc compared to the unaltered
resonance frequency ωc of the cavity, we can obtain δωc(xp) from
electromagnetic perturbation theory [123]:

δωc(xp) = −
ωc

2

∫
d3r~P(r) · ~E(r)∫

d3r ddω (ε(ω, r)ω) |E(r)|2
(A.1)

where ~E(r) is the electric field of the empty resonator, ε(ω, r) is the
dielectric function of the empty resonator, and ~P(r) is the additional
polarization due to the presence of the particle. If we take the
particle to be small compared to the wavelength of the laser, the
electric field across the particle is approximately constant and its
response is equivalent to a point dipole with polarizability α(ω).
As an example, for a dielectric sphere of volume V and refractive
index n in vacuum, the polarizability can be exactly calculated,
α(ω) = 3ε0V

n2−1
n2+2

. For a given polarizability, one finds

δωc(xp) = −
ωcα(ω)

2ε0Vm
f(xp) (A.2)

with f(x) =
d
dω (ε(ω,x)ω)|E(x)|2

maxx d
dω (ε(ω,x)ω)|E(x)|2

describing the dimensionless

spatial intensity profile of the empty cavity, normalized to be 1

at the intensity maximum. Vm is the mode volume of the empty
resonator and is defined as follows:

Vm =

∫
d3x ddω (ε(ω, x)ω) |E(x)|2

maxx d
dω

(ε(ω, x)ω) |E(x)|2
(A.3)

a.2 scattering rate of the trapped particle

Here we consider the scattering of light by the trapped object
itself, which decreases the cavity quality factor by contributing

81
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to its loss rate κ = κex + κint + κscat(xp). The scattering rate for
sub-wavelength particles reads:

κscat(xp) = σscatc
f(xp)

Vm
, (A.4)

with Vm being the mode volume, c the photon velocity, and
σscat = k4

6πε20
|α(ω)|2 the Rayleigh scattering cross-section (where

k = 2π
λ is the wavevector of the incident light). We begin by com-

paring the relative effects of the position dependent scattering rate
and cavity frequency shift on the intra-cavity photon number.

Fig. 2.2b) in the main text shows how the particle motion shifts
the resonance peak of the intra-cavity photon number spectrum.
In contrast, a position dependent scattering rate does not shift the
peak, but instead alters its width and height. With this picture in
mind we can neglect the effect of the position dependent scattering
rate, if the change in scattering rate δκ(xp) = κscat(xp) is much
smaller than the frequency shift δωc(xp) induced by the same
particle movement. Using Eq. (A.4) and Eq. (2.6) and comparing
these two quantities yields:

|δκscat(xp)|

|δωc(xp)|
∼ (kr)3 � 1, (A.5)

which allows us to neglect the position dependence of the scatter-
ing rate for sub-wavelength particles.

Nonetheless we have to consider the reduced quality factor of
the resonator-particle system due to scattering of light. The total
cavity decay rate is κ = ωc

Q + κscat(x0) where Q = ωc
κex+κint

is the
quality factor of the empty cavity. Thus, the back-action parameter
reduces to

η = Q
α(ω)

ε0Vm

1

1+
κscat(x0)
κex+κint

. (A.6)

From Eq. (A.4), assuming that α(ω) ≈ ε0V and writing Vm =

ν
(
λ
2

)3
, where ν tells us how close the light is focused to the diffrac-

tion limit, the scattering rate reads

κscat(xp) ≈ κscat(x0) /
8ε2

27π2ν
(kr)6ωL. (A.7)

Inserting this into Eq. (A.6) finally yields

η =
4

3π2
Q

ν

(kr)3

1+ Q
ν

8
27π2

(kr)6
, (A.8)
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Figure A.1: Plot of the back-action parameter as a function of particle
size after considering particle induced scattering losses as de-
scribed by Eq. (A.8). Here we take ν = 1 and empty-resonator
quality factors of Q = 105, 106, 107.

and is plotted in Fig. A.1 for ν = 1. In the limit that Qν
8

27π2
(kr)6 �

1, we recover our results from the main text where scattering is
negligible, and decreasing the mode volume or increasing the
quality factor has the same effect on the back-action parameter. In
general, however, for a given value of Qν for an empty resonator,
there is a maximum achievable η,

ηmax =

√
3Q

2π2ν
, (A.9)

which occurs at an optimized particle size of

kr = 6

√
27π2ν

8Q
. (A.10)

a.3 time averaged experienced intensity

Here we want to derive Eq. (2.10) of the main text. In order to do
so, we multiply Eq. (2.4) with f(x)

f ′(x) · dt and integrate both sides
over a quarter of an oscillation period:∫pmax

0

dp
f(x)

|f ′(x)|
=
ωcα(ω)

2Vm

∫ T
4

0

dt ·n(x(t)) · f(x(t)) (A.11)
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We integrate from the classical turning point (where the momentum
is zero) to the trap minimum (where the momentum is maximal)
which relates to a quarter of the oscillation period T . Using Eq. (2.9)
of the main text, the right side of the previous equation is pro-
portional to the time averaged experienced intensity and we can
formally rewrite Eq. (A.11) as follows:

〈Iexp〉t =
4c

Tα(ω)

∫pmax

0

dp
f(x)

|f ′(x)|
(A.12)

To proceed we make two approximations: First we approximate
the oscillation period T in the high back-action regime as T ≈ 4 xtvmax

.
In particular, the particle moves in a square well with length
δx = 2xr = 2xt, where xt is the classical turning point, and vmax is
the maximum velocity in the middle (minimum) of the potential.
Additionally, in the high back-action regime the particle signifi-
cantly changes its momentum only around the classical turning
point xt when it hits one of the edges of the square well. Since the
momentum change occurs in a narrow region, we can approximate
in the integral f(x) ≈ f(xt) and |f ′(x)| ≈ |f ′(xt)|. These approxima-
tions lead to the following equation:

〈Iexp〉t ≈
cε0
α(ω)

2

xt

f(xt)

|f ′(xt)|
Ekin (A.13)

where vmax · pmax = 2Ekin, with Ekin being the maximal kinetic
energy in the trap. Now we can normalize this time averaged expe-
rienced intensity with the time averaged experienced intensity of
the optical tweezer regime. We begin with expanding the potential
Eq. (2.8) for small η:

UT (x) = −2 h
κex

κ
E20

η

1+ ∆̃2
f(x). (A.14)

Since f(x) only varies between 0 and 1, it follows that the trap
depth δUT is given by

δUT = 2 h
κex

κ
E20

η

1+ ∆̃2
. (A.15)

Next we insert Eq. (2.7) of the main text, and assume that the
particle is tightly trapped (kδx� 1) around the point of maximum
intensity. As the change in intra-cavity photon number is negligible,
we can approximate n(xp) ≈ n(x0). Eq. (2.9) from the main text
then predicts that

〈Iexp,T〉t =
c hωL
2Vm

n(x0)f(x0) (A.16)
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Figure A.2: Plot of the time-averaged experienced intensity of the particle
as a function of back-action parameter 〈Iexp(η)〉t, normalized
by the value in the optical tweezer regime η � 1. The two
cases are set to have equal trap depth. The plot is numerically
calculated for the case of trapping in the fundamental mode of
a Fabry-Perot cavity f(x) = cos2(kx) with resonant positions
kxr =

π
10 . The red line shows the excellent agreement between

Eq. (A.17) and the numerical simulation of Eq. (2.9) in the
main text.

in the optical tweezer regime. For the case where the particle is
trapped around the antinode of the fundamental mode of a Fabry-
Perot cavity:

〈Iexp,T〉t =
cε0
α(ω)

δUT . (A.17)

Normalizing Eq. (2.10) with Eq. (A.17) and ensuring that δU = δUT
for all η yields:

〈Iexp〉t
〈Iexp,T〉t

≈ 2

xt

f(xt)

|f ′(xt)|

Ekin

δU
. (A.18)

Surprisingly this equation is valid for all η as long as the particle
is confined sufficiently close to the antinode. Fig. A.2 shows the
excellent agreement between the numerical simulation and the
analytic solution obtained by Eq. (A.18). Taking the limit η→∞ of
Eq. (A.18) implies xt → xr which reproduces Eq. (2.10) of the main
text:

lim
η→∞〈Iexp(η)〉t =

2cε0
α(ω)

f(xr)

|f ′(xr)|

Ekin

xr
(A.19)
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a.4 optimization of the harmonic back-action regime

Here we want to maximize the spring constant kopt = khb + kT
given by Eq. (2.11) in the main text. khb =

∑
i n
′
i(x0)ω

′
c,i(x0) de-

scribes the first term in Eq. (2.11) and originates from changes of
photon number with particle position, whereas kT is the familiar
term known from optical tweezers. The optimization is done for
a fixed experienced intensity 〈Iexp〉t if we consider two trapping
modes of a cavity. As a result we will derive Eq. (2.12) and Eq. (2.13)
in the main text and conclude how to optimally choose the laser
detunings for the trapping modes.

We focus on the regime where the trap minimum x0 is located
roughly at a distance ∼ 1

kη away from both resonant positions,
where the photon number n(xp) can be linearized around the
trap minimum x0 for each trapping mode i: ni(x) ≈ ni(x0) +

n ′i(x0)(x− x0). A linear change in photon number with displace-
ment implies a harmonic trap, because the force is proportional to
the photon number (see Eq. (2.4) and Eq. (2.6) in the main text and
note that f ′i(x) ≈ f ′i(x0) ≈ f ′i(xri) for kδx � 1). Using Eq. (2.9) in
the main text, the term proportional to n ′i(x0) does not contribute
to the time-averaged intensity due to the harmonic motion. Under
these circumstances Eq. (A.16) is valid in the harmonic back-action
regime as well and the particle experiences the following time
averaged intensity from each trapping mode i:

〈Iexp,i〉t ≈
2E20κexc hωL
κ2Vm

fi(x0)

1+ (ηf ′i(xri))2(x0 − xri)2
, (A.20)

where we linearized the mode profiles around their resonant
positions in Eq. (2.9) in the main text. This is a good approximation
if the the width of the intensity peaks is smaller than the spatial
variations of the mode profiles, which is the case for η� 1. Now
can write the contributions to the first term khb of Eq. (2.11) in the
main text as:

khb,i ≈ 4E20
κex

κ

(
ηf ′i(xri)

)2 η|f ′i(xri)(x0 − xri)|(
1+ (ηf ′i(xri))2(x0 − xri)2

)2 . (A.21)

Expressing the optical tweezer term kT in the same way, we can
write kopt,i in terms of 〈Iexp,i〉t:

kopt,i =
α(ω)

cε0
〈Iexp,i〉t

1

fi(x0)

[
2ri

1+ r2i
ηif
′
i(xri)

2 − f ′′i (x0)

]
. (A.22)
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ri = |ηif
′
i(xri)(xri − x0)| physically describes the ratio between half

of the width of an intensity peak 1
ηif

′
i(xri)

and the distance of the
respective resonant position of mode i from the trap minimum
|xri − x0|. The spring constant is maximized for ri = 1 for which
Eq. (A.22) reduces back to Eq. (2.12) in the main text. For ηi � 1

and ri = 1 the contribution to the spring constant proportional
to f ′′i (x0) can be neglected and the spring constant purely arises
from changes of photon numbers with particle position. In contrast,
for η� 1 we can neglect the contribution proportional to f ′i(x0)

2

reaching again the optical tweezer regime.

Eq. (2.13) in the main text is derived by forming the ratio of
these two contributions to the spring constant khb

kT
and compar-

ing the two experienced intensities necessary to create the same
spring constant in each regime. To derive this, we also assume
that the trapping modes consist of the first and second modes of
a Fabry-Perot cavity, which have equal back-action parameters ηi.
We also use that 〈Iexp,1〉tf2(x0) ≈ 〈Iexp,2〉tf1(x0) using Eq. (2.4) in
the main text with Eq. (A.16) and |f ′1(x0)| ≈ |f ′2(x0)| close to the
trap minimum.

a.5 from the jaynes-cummings model including mo-
tion to an effective model of motion only

Eq. (3.2) of the main text describes the full master equation of a
moving two-level atom interacting with a cavity, in the presence of
cavity losses and atomic spontaneous emission. In the limit where
the cavity is driven near resonantly and the atom is far-detuned,
the atomic excited state can be eliminated to yield an effective
optomechanical system involving just the atomic motion and the
cavity mode. One can go a step further and eliminate the cavity
mode, to yield the reduced dynamics of just the atomic motion. The
procedure by which a certain degree of freedom can be eliminated
from an open system is known as the Nakajima-Zwanzig projection
operator formalism [105, 107, 108], which we now describe here.

a.5.1 Projecting out the atomic excited state

First, we want to eliminate the atomic excited state from the full
dynamics of Eq. 3.2. It is convenient to define a set of operators
P,Q, which project the entire system density matrix

ρ = |g〉〈g|ρgg + |g〉〈e|ρge + |e〉〈g|ρeg + |e〉〈e|ρee, (A.23)
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Figure A.3: The complete Hilbert space of the internal degrees of free-
dom of the atom. Pρ is the part we are interested in and the
remainder is characterized by the projection operator Q.

into the subspace spanned by |g〉 〈g| (which we want to project the
dynamics into), and its orthogonal 1− |g〉 〈g|. Here ρij = 〈i|ρ|j〉 are
the reduced density matrices for the reduced Hilbert space, which
still contain all other existing degrees of freedom. Thus, we define
a projection operator P:

Pρ = |g〉〈g|ρgg (A.24)

and its complementary

Qρ = |g〉〈e|ρge + |e〉〈g|ρeg + |e〉〈e|ρee. (A.25)

It is straightforward to show P2 = P,Q2 = Q,QP = 0,P +Q = 1.
In Fig. A.3 we draw a simple picture of the full Hilbert space of
the internal degrees of freedom of the atom in order to visualize
the part of the Hilbert space we are interested in (described by Pρ)
and the part we are not (described by Qρ). We will now divide
the super-operator L up in parts according to the way they act on
the Hilbert space describing the internal degrees of freedom of the
atom:

L = Lo + La + LI + J. (A.26)

Here, Lo = Lm + Lc is composed of terms that do not act on the
internal degrees of freedom, with Lm and Lc describing respectively
the trapped atomic motion and the bare dynamics of the driven
cavity mode:

Lmρ = −i[ωmb†b, ρ] (A.27)
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Lcρ = iδc[a†a, ρ]− i
√
κrE0[(a+a

†), ρ]−
κ

2

(
a†aρ+ ρa†a− 2aρa†

)
.

(A.28)

The super-operator

Laρ = iδ[σee, ρ] −
γ

2
{σee, ρ} (A.29)

acts on |e〉〈g|, |g〉〈e|, |e〉〈e| (the subspace spanned by Q) and just
multiplies those terms by a c-number. It describes evolution and
damping of the excited internal state of the atom.

LIρ = −i[g(x)(σega+ σgea
†), ρ] (A.30)

acts on all the states and all Hilbert spaces, describing the interac-
tion of the atom with the cavity field and

Jρ = γσgee
−ikcxρeikcxσeg (A.31)

describes the spontaneous jump of the excited state of the atom into
its ground state accompanied by a momentum recoil. In Fig. A.4 we
draw arrows showing how these super-operators act on different
parts of the Hilbert space of atomic internal degrees of freedom. We
are interested in the dynamics of the subspace Pρ, while accounting
for fluctuations into Qρ. Thus, only closed loops which start and
end in Pρ contribute to the evolution of the reduced density matrix
Pρ. To see how this works, we define v = Pρ and w = Qρ and
insert P+Q = 1 into Eq. (3.2):

v̇ = Pρ̇ = PLρ = PLPρ+ PLQρ. (A.32)

Let us first look at PLP:

PLPρ = P(Lo + La + LI + J)Pρ. (A.33)

To quickly identify vanishing terms we take advantage of Fig. A.4
by following the path the super-operators take us through the
Hilbert space applying them from the right to the left. Here are
some examples:

1. The term PLIP: P projects into the subspace |g〉〈g|, while LI
maps a state from P to Q. Thus, acting again with P causes
this term to vanish.

2. PLaP: P projects into |g〉〈g| and we immediately see that La
does not act on it, so this term vanishes.
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Figure A.4: The Hilbert space of the internal degrees of freedom of the
atom. The notation is as follows: The label of an arrow cor-
responds to a Liouvillian, while the direction of the arrow
indicates the possible beginning and ending subspaces of the
Liouvillian. For example, the red arrow indicates that the
Liouvillian J acting on the subspace |e〉 〈e| takes this subspace
to |g〉 〈g|. Since we assume δ0 or γ to be much larger than κ
and ωm, we can neglect the action of Lo = Lm + Lc during
a fluctuation out of Pρ, which we indicate by crossing them
out in the right-top corner and neglecting them in Eq. (A.35).
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3. PJP = 0 because J does not act on |g〉〈g|.

After identifying all vanishing terms, we obtain:

v̇ = Lov+ P(J+ LI)w (A.34)

and

ẇ = QLIv+Q(Lo + La + LI)w. (A.35)

Note that w describes the evolution of the fluctuations out of the
subspace of interest. As the timescale of these fluctuations is set by
δ0 and γ and we assume that either δ0 or γ is much larger than
both ωm and κ, we can neglect the free evolution of the cavity or
motion during one of these fluctuations and approximate Low ≈ 0
in Eq. (A.35), as also indicated in Fig. A.4. Then the general solution
to this equation reads:

w(t) =

∫t
0

dτeQ(Lo+La)(t−τ)QLIw(τ)+

∫t
0

dτeQ(Lo+La)(t−τ)QLIv(τ)

(A.36)

where we set w(0) = 0 as the initial condition. Now we plug this
equation twice into Eq. (A.34) (iteratively) in order to catch a term
of the order JL2I :

v̇(t) = Lov+ P(J+ LI)

∫t
0

dτeQ(Lo+La)(t−τ)QLIv(τ)

+ P(J+ LI)

∫t
0

dτeQ(Lo+La)(t−τ)QLI

∫τ
0

dτ ′eQ(Lo+La)(t−τ
′)QLIv(τ

′).

(A.37)

Here we neglected the term proportional to w(τ ′) since it produces
only terms ∝ L3I or higher. Again by following the path of how
these super-operators act with Fig. A.4, we can quickly identify
which terms vanish since all contributing terms need to have closed
loops starting and ending in |g〉〈g|. So we are left with:

v̇(t) = Lov+ PLI

∫t
0

dτe(Lo+La)(t−τ)LIv(τ)

+ PJ

∫t
0

dτe(Lo+La)(t−τ)LI

∫τ
0

dτ ′e(Lo+La)(t−τ
′)LIv(τ

′).

(A.38)

After extending the lower integral borders to −∞ (Markov approx-
imation), we obtain Eq. (3.7) of the main text.
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a.5.2 Projecting out the cavity field

The next step is to find a master equation only containing motional
degrees of freedom (p and x) of the atom as operators. In order to
find this equation we need to use the Nakajima-Zwanzig technique
to project out the cavity mode from Eq. (3.7). For the sake of

simplicity we assume δ0 � γ (and thus g20

δ20+
γ2

4

≈ g20
δ20

) and κ � γ

in the following, so we can ignore the atomic decay channel for
this derivation by approximating Lom ≈ Lκ. For weak driving, we
can restrict ourselves to the photon subspace defined by |0〉 , |1〉.
Subsequently, we can adopt our projection operator formalism
from above and write the density operator as follows:

ρ = |0〉〈0|ρ00 + |0〉〈1|ρ01 + |1〉〈0|ρ10 + |1〉〈1|ρ11 (A.39)

with ρij = 〈i|ρ|j〉 being the reduced density matrix describing
atomic motion. As we are interested in the subspace spanned by
|0〉〈0| we define an projection operator P:

Pρ = |0〉〈0|ρ00 (A.40)

and

Qρ = |0〉〈1|ρ01 + |1〉〈0|ρ10 + |1〉〈1|ρ11. (A.41)

We again decompose the total Liouvillian in parts according to the
way they act:

L = Lm + Lca + LD + J (A.42)

with Lm defined in Eq. (A.27),

Lca ≈ −i[−∆(x)a†a, ρ] −
κ

2
{a†a, ρ} (A.43)

and LDρ = −i
√
κrE0[a+ a

†, ρ], which describes the interaction of
the cavity mode with an external coherent laser drive. Jρ = κaρa†

describes the spontaneous decay of the cavity mode. Now we draw
in Fig. A.5 a picture of the Hilbert space of the degrees of freedom
of the cavity, including the arrows which illustrate how these
defined super-operators act. A similar prodecure as in Appendix
A.5.1 leads to the quantum master equation (3.13) of the main text
describing atomic motion.

a.6 single photon scattering theory

Here we provide details of the derivation of Eqs. (3.24) and (3.25)
in the main text. Inserting Eqs. (3.22) and (3.23) into Eq. (3.21) and
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Figure A.5: The Hilbert space of the single excitation subspace of the cav-
ity. The label of an arrow corresponds to a Liouvillian, while
the direction of the arrow indicates the possible beginning
and ending subspaces of the Liouvillian. For example, the red
arrow indicates that the Liouvillian J acting on the subspace
|1〉 〈1| takes this subspace to |0〉 〈0|. As we assume κ � ωm,
we can neglect the time evolution due to the super-operator
Lm during a fluctuation out of Pρ.
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multiplying with 〈(ω ′)r/t,m| from the left gives us an equation for
the S-matrix elements:

Sr/t,n(ωL)δ(ωL−ω
′−nωm) = 〈(ω ′)r/t,n|S |(ωL)left, 0〉 (A.44)

where ω ′ refers to the frequency of the reflected or transmitted
photon. In the following, we will establish a connection between
the S-matrix elements, and the standard input-output formalism of
cavity QED [113]. Conveniently, this connection enables one to cal-
culate S-matrix elements based upon knowledge of the eigenvalues
and eigenstates of the system Hamiltonian Heff. The input-output
equation states that the output field in each decay channel (re-
flection/transmission) is the sum of the input field and the field
emitted by the scattering center. For example the input-output
equation for photon reflection is given by

aout(t) = ain(t) − i
√
κra(t) (A.45)

where for notational convenience we leave out the subscript “r”
in the input and output ports. The scattering operators ain/out(ω)

are connected to the input-output Heisenberg-Langevin operators
ain/out(t) by a simple Fourier transform [112]

ain/out(ω) =
1√
2π

∫
dteiωtain/out(t). (A.46)

Now we focus on the S-matrix for the process of photon reflection

Sr,n(ωL)δ(ωL−ω
′−nωm) = 〈0c,n|aout(ω

′)a†in(ωL) |0c, 0〉 (A.47)

where we expressed the S-matrix in terms of scattering operators
a
†
in(ωL) and aout(ω

′) which create in- and out-going monochro-
matic scattering states [124]. Using the input-output equation, one
can re-write aout in terms of the cavity field and input field, yielding

Sr,n(ωL)δ(ωL −ω
′ −nωm) = δ(ωL −ω

′)δn,0

− i
√
κr 〈0c,n|a(ω ′)a†in(ωL) |0c, 0〉 .

(A.48)

Now we replace the scattering operators with the Fourier transform
of the corresponding input-output operators. The matrix element
〈0c,n|a(t ′)a†in(tL) |0c, 0〉 vanishes for tL > t ′ since
[a(t ′),a†in(tL)] = 0 for tL > t ′ and 〈0c|a†in(tL) = 0. Thus, we intro-
duce the time ordering operator T making sure that t ′ > tL. Then
we have

〈0c,n| T [a(t ′)a†in(tL)] |0c, 0〉 = −i
√
κr 〈0c,n| T [a(t ′)a†(tL)] |0c, 0〉 ,
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(A.49)

where we replaced ain(tL) with a(tL) using the input-output equa-
tion. The term containing the output operator vanishes as [a(t ′),a†out(tL)] =

0 for t ′ > tL (which is already ensured by T) and 〈0c|a†out(tL) = 0.
Finally, we arrive at

Sr,n(ωL)δ(ωL−ω
′−nωm) = δ(ωL−ω

′)δn,0−κrτn(ωL) (A.50)

with

τn(ωL) =
1

2π

∫
dtLdt

′ei(ω ′t ′−ωLtL) 〈0c,n| Ta(t ′)a†(tL) |0c, 0〉 .

(A.51)

For the S-matrix describing the process of photon transmission we
obtain

St,n(ωL)δ(ωL −ω
′ −nωm) = −

√
κrκtτn(ωL). (A.52)

Note that the S-matrix of reflection Sr includes the term δ(ωL −

ω ′)δn,0 describing interaction-free reflection of photons. In contrast,
in the S-matrix of transmission St there is no such term, since the
input field on the transmitting side of the cavity is in the vacuum
state and thus the transmitted field is built exclusively from the
emission of photons by the scattering center. We can write

〈a(t ′)a†(tL)〉 = Tr
[
aeLs(t

′−tL)aρ(0)
]

, (A.53)

where ρ(0) = |0c, 0〉 〈0c, 0| and Lsρ = −i[Heff, ρ] + κaρa† with Heff

described by Eq. (1.3) from the main text. Since the term κaρa†

reduces the number of photons, its contribution vanishes as the
correlator conserves the number of photons. Thus, the evolution of
a(t) is governed by Heff alone and for evaluating the S-matrix we
can effectively use

a(t) = eiHeffta†e−iHefft. (A.54)

We further express

〈0c,n| Ta(t ′)a†(tL) |0c, 0〉 = Θ(tL− t ′)eiωnntL 〈1c,n| e−iHeff(tL−t
′) |1c, 0〉

(A.55)

where eiωnntL counts the energy of the created phonons during the
scattering process and the step function Θ(tL − t ′) which vanishes
for tL < t ′ ensures time ordering. In order to express the S-matrix
fully in terms of eigenvalues λβ and eigenstates |β〉 of Heff with
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Heff |β〉 = λβ |β〉 we insert a unity operator 1 =
∑
β |β〉 〈β| right

before |1c, 0〉. Therefore we write

〈1c,n| e−iHeff(tL−t
′) |1c, 0〉 =

∑
β

〈1c,n|β〉e−iλβ(tL−t ′)〈β|1c, 0〉

(A.56)

where 〈1c,n|β〉 is the projection of the eigenstates |β〉 into the basis
states 〈1c,n|. After evaluating the Fourier transform in Eq. (A.51)
we are left with

τn(ωL) = −iδ(ωL−ω ′−nωm)
∑
β

〈1c,n|β〉 1
λβ
〈β|1c, 0〉. (A.57)

which together with Eq. (A.50) and (A.52) reproduces Eq. (3.24)
and (3.25) in the main text.

a.7 the full effective theory and its validity

Here we begin by generalizing our effective theory presented in the
main text (sections 3.3 and 3.4) by including spontaneous emission
into the master equation (3.13) and the single photon scattering
output state (3.26). Then we define the parameter space for which
our theory is valid. We do this by comparing results of our effective
theory with a numerical simulation of the full Jaynes-Cummings
model including motion (3.2) where the only assumption is the
Lamb-Dicke regime ηLD � 1 which allows for the linearization
of the mode profile u(x). This approximation is only done for
numerical purposes and we note that our effective theory does not
depend on the Lamb-Dicke parameter.

For systems where κ � γ is not true, we need to include the
atomic decay channel. Doing so, the single photon scattering output
state now generalizes to:

|Ψout〉 = Sr(ωL, x)Ψ0(x) |(ωL)r〉+ St(ωL, x)Ψ0(x) |(ωL)t〉
+ Sat(ωL, x)Ψ0(x) |(ωL)at〉

(A.58)

where the scattering matrices for reflection, transmission and the
scattering matrix for spontaneous emission are respectively given
by:

Sr(ωL, x) = 1−
iκr

∆c(x) + iκ(x)2
(A.59)
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St(ωL, x) = −
i
√
κtκr

∆c(x) + iκ(x)2
, (A.60)

Sat(ωL, x) =

√√√√ g20

δ20 +
γ2

4

i
√
γκr

∆c(x) + iκ(x)2
u(x)eikcx. (A.61)

The scattering matrices conserve probability and obey |Sr(ωL, x)|2+
|St(ωL, x)|2 + |Sat(ωL, x)|2 = 1 for all values of ωL and x. Note that
we treat here for simplicity only one direction of spontaneous
emission which has a one dimensional decay channel described by
|(ωL)at〉. The resulting momentum kick qualitatively reproduces
the main effect that would occur in a full three-dimensional treat-
ment of spontaneous emission. We also did not exclusively account
for intrinsic cavity losses at a possible rate κin, however including
this process would simply result in an additional term in the output
state Eq. (A.58) with a corresponding S-matrix that looks like St,
but with κt replaced by κin. The total effective linewidth of the
cavity is increased by the effective rate of spontaneous emission

κ(x) = κr + κt + γ
g20

δ20 +
γ2

4

u2(x), (A.62)

which depends on the position of the atom. As explained in the
main text, we can express the jump operators in terms of the scat-
tering matrices such that they describe intuitive physical decay
processes. The corresponding master equation describing a coher-
ent drive is then given by:

ρ̇ = −i(Heρ− ρH†e) + E
2
0(SrρS

†
r + StρS

†
t + SatρS

†
at) (A.63)

with the Hamiltonian

He = ωmb
†b−

i
2
E20. (A.64)

Note that by including spontaneous emission into the model the
zero-point resolution reads in good approximation

rzp ≈ ηLD
2g20|δ0|

κ(x0)(δ
2
0 +

γ2

4 )
. (A.65)

Here we have averaged the position dependent effective decay rate
κ(x0) ≈ 〈Ψ0|κ(x) |Ψ0〉 with the atomic wavefunction Ψ0(x).

In order to derive the single photon output state (A.58) and the
master equation (A.63) we made two assumptions:
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1. Large atom/laser detuning δ0 � g0, which allowed us to
effectively eliminate the excited state of the atom leading
to an effective optomechanical master equation (3.7). Note
that a large spontaneous emission rate γ� g0 would allow
this elimination as well. However, here we are interested in
strongly coupled systems, where g0 & γ.

2. Unresolved vibrational sidebands κ� ωm which allowed us
to derive the output state (A.58) and effectively eliminate the
cavity mode in order to derive the master equation (A.63).

Now we will check the limits of these assumptions by numerically
simulating a single photon scattering event with the full model
(Eq. (3.2)). The numerical simulation is done by diagonalizing the
Hamiltonian

HD = ωmb
†b− (δ0 + i

γ

2
)σee − (δc + i

κ

2
)a†a

+ g0(u(x0) + g0ηLD(b
† + b))(a†σge + h.c.), (A.66)

in the single-photon subspace and using the eigenvalues and
eigenstates in the exact scattering matrices for reflection, trans-
mittion and atomic decay constructed according to Eq. (3.24) and
Eq. (3.25). One has to take care that the unity operator as inserted
in Eq. (A.56), is here 1 =

∑
β |β〉 〈β∗|, with the eigenvectors normal-

ized as 〈β∗〉β = 1, since the Hamiltonian HD is complex symmetric
due to losses rather than Hermitian.

a.7.1 Limits of the assumption |δ0|� g0

We begin with the question of how large g0
|δ0|

can be, such that all
approximations previously made are still valid. This is important
to know, as the previously studied regime of resolved zero-point
motion rzp � 1 requires a large effective optomechanical coupling
rzp ∝ gom ∝∼

g0
|δ0|

. Thus, to reach this regime, it is beneficial to choose
g0
|δ0|

as large as possible. However, increasing this fraction, we will
eventually leave the parameter space in which our effective theory
correctly predicts results. To understand when this happens we
will now compare our effective theory with a numerical simulation
of the full master equation (A.66) as a function of g0/|δ0| (and later
as a function of ωm/κ for similar reasons). We will assume in the
following that the atom is trapped in its motional ground state at
a location with maximum intra cavity intensity slope kcx0 = π/4
and, if not stated otherwise, that the single incident photon is on
resonance with the atom-cavity system ∆c(x0) = 0, which implies
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Figure A.6: Effective theory vs numerical simulation. We assume the
atom to be initially in its motional ground state and the inci-
dent photon in resonance with the atom-cavity system.
a) Probability of photon reflection pr (red), photon trans-
mission pt (orange) and spontaneous emission pat (green)
as a function of g0

|δ0|
and calculated with the effective the-

ory. Blue smaller dots: numerical simulation. Parameters
from a recente fiber cavity experiment with trapped 40Ca+-
ions (see Appendix A.8.2, parameter set II). Here we choose
κt = 2π · 0.8Mhz, κr = 2π · 2.8Mhz, ηLD =

√
ωrec/ωm = 0.2,

ωm = 2π · 0.2Mhz.
b) Conditional phonon expectation value n̄r given that a
photon is reflected from the cavity for the same parameters
as a). The effective theory (red) matches very well with the
numerical simulation (blue).
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xr = x0. Fig. A.6a) shows the probability of photon reflection pr
(red), photon transmission (orange) and spontaneous emission pat

(green) as a function of g0/|δ0| calculated with the effective theory:

pr/t/at(ωL) =

∫
dx|Sr/t/at(ωL, x)|2|Ψ0(x)|2. (A.67)

We use for |Sr/t/at(ωL, x)|2, Eq. (A.59), Eq. (A.60) and Eq. (A.61),
respectively. We also use parameters from a recent fiber cavity
experiment (Appendix A.8.2), where γ > κ and thus, one needs to
account for spontaneous emission. The blue dots correspond to the
full numerical simulation of the Jaynes-Cummings model including
motion (Eq. (A.66)). We observe a great match for g0/|δ0| < 1/2.
Fig. A.6b) shows the conditional phonon expectation value n̄r =
〈Ψr|b†b |Ψr〉 given a reflected photon as a function of g0/|δ0| for
the same parameters as a). Ψr(x) is given by Eq. (3.35) in the main
text. We observe a great match for g0/|δ0| < 1.

a.7.2 Limits of the assumption κ� ωm

Here we want to check the validity of the effective theory once
sideband resolution is approached. We plot the created phonon
expectation value n̄r after reflecting a single photon in Fig. A.7
as a function of ωmκ . Here, we take the vacuum Rabi splitting
g0 = 2π× 10GHz corresponding to a possible photonic crystal
cavity (A.8.1.1), an atom-cavity detuning of ω0 −ωc = 100g0,
and again we consider a resonant photon for an atom trapped
at kcx0 = π/4. For illustrative purposes, we take an artificially
low value of κ = 2π× 20MHz, which is distributed only between
reflection and transmission ports (with κr = 4κt), and allow ωm to
vary. We observe a reasonable match between the exact numerical
simulation and our effective model for ω/κ < 1/4.

a.8 experimental canditate systems for resolving zero-
point motion

a.8.1 Photonic Crystal Cavities

The coupling of atoms to the mode of a photonic crystal cavity
can be as large as g0 ∼ 2π× 10GHz [125] for Rubidium atoms.
Rubidium atoms have a natural linewidth of γ ∼ 2π× 6MHz and
a recoil frequency of ωrec ≈ 2π× 3.8 kHz for a resonant photon
wavelength around λc ≈ 780nm. At the same time quality factors of
more thanQ ∼ 106 are feasible inside photonic crystal nano-cavities
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Figure A.7: Effective theory (blue) vs numerical simulation (red dots)
approaching sideband resolution
We assume the atom to be initially in its motional ground
state and that the incident photon is on resonance with the
atom-cavity system. We plot the phonon expectation value n̄r
after reflecting a photon as a function of ωm/κ. Parameters
are chosen for an atom trapped inside a photonic crystal
cavity as presented in Appendix A.8.1. We choose an atom-
cavity detuning of ω0 −ωc = 100g0 and an artificial value of
κ = 2π× 20MHz (with κr = 4κt) as we only want to check
the validity of the effective theory once sideband resolution
is approached.
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Figure A.8: a) Zero-point resolution rzp as a function of cavity-atom
detuning ω0 − ωc for parameter set I (red) and set II
(blue, dashed) of a tunable fiber cavity experiment with
trapped ions. For parameters see A.8.2. Here, we choose
ωm = 2π× 0.1MHz, kcx0 = π/4 and δc such that xr = x0
(see b)).
b) Here we show how to choose δc in order to ensure
kcxr = kcx0 = π/4. Plotted is the cavity-laser detuning δc
as a function of ω0 −ωc for parameter set I (red) and set II
(blue, dashed) satisfying the condition ∆c(xr) = 0.

[75], associated with a decay rate of rougly κ ∼ 2π× 0.25GHz. Since
γ� κ, spontaneous emission can be ignored and experiments are
very well described by the effective master equation (Eq. (3.13))
and the effective output state (Eq. (3.26)). The achievable zero-
point resolution in photonic crystal cavities is rzp ∼ 10 by taking
ηLD = 0.25 (calculated with Eq. (A.65)).

a.8.2 Fiber Cavities

Here we discuss a fiber cavity QED experiment with trapped
40Ca+-ions (ωrec ≈ 2π × 6.8 kHz, γ = 2π × 11.2MHz) by Tracy
Northup in Innbruck [126]. They are able to realize different sets of
g0 and κ by changing the cavity length. Here we give two examples:

1. Parameter set I is given by: g0 = 2π× 41MHz , κ = 2π×
8MHz.

2. Parameter set II is given by: g0 = 2π × 21MHz and κ =

2π× 3.6MHz.

Fig. A.8(a) shows the zero-point resolution rzp as a function of
cavity-atom detuning ω0 −ωc for parameter set I (red) and set
II (blue, dashed) calculated with Eq. (A.65). We choose ωm =

2π× 0.1MHz, kcx0 = π/4. δc is chosen in a way that the condition
∆c(xr) = 0 is satisfied, which implies xr = x0. We observe that by
choosing ω0 −ωc = 2g0 one achieves rzp ≈ 1.05 with parameters
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set I and rzp ≈ 1.03 with parameter set II. We also demonstrate how
to choose δc in order to obtain kcxr = kcx0 = π/4 in Fig. A.8(b),
which shows δc as a function of ω0 −ωc for parameter set I (red)
and set II (blue, dashed).

Note that because the spontaneous emission rate γ is comparable
to κ, the process of spontaneous emission cannot be neglected and
the master equation (A.63) and single photon scattering output
state (A.58) need to be applied in order to predict outcomes of this
experiment.

a.9 beyond the lamb-dicke regime : including quadratic-
order terms in displacement

In order to show that the strong coupling regime of optomechanics
can already be observed by an existing experiment, we plotted
g(2)(0) as a function of x0 in Fig. 4.3b) in the main text. In this
calculation, we linearized the cavity mode profile u(x) in Hamil-
tonian Eq. (4.2) of the main text around the trapping position x0:
u(x) ≈ u(x0) + u ′(x0)kc(x− x0), which is strictly only valid in the
Lamb-Dicke regime ηLD = kcxzp =

√
ωrec/ωm � 1. However, in

order to produce Fig. 4.3 of the main text, we used a trapping
frequency of ωm = 2π× 0.1MHz. With the recoil frequency of
40Ca+-ions this corresponds to ηLD ≈ 0.26.

To ensure that the results are not significantly affected by this
relatively large Lamb-Dicke parameter, we will now include the
next order term u(x) ≈ u(x0)+u ′(x0)kc(x−x0)+ (1/2)u ′′(x0)(x−

x0)
2. In Fig. A.9a), we plot the adjusted g(2)(0) as a function of

atom position x0 and detuning δc. Here we choose ∆ = 10g0
and ωm = 2π× 0.09MHz in order to minimize g(2)(0) including
quadratic order corrections. Fig. A.9b) shows g(2)(0) as a function
of atom position x0 following the ZPL of a) (blue). In red we plot
g(2)(0), where u(x) has only been expanded until linear order
for the same parameters. We observe a reasonable match and
conclude that linearizing motion on the Hamiltonian level at least
qualitatively fully captures the relevant physics even for relatively
large ηLD. For completeness, we plot g(2)(0) as a function of ωm
and ∆ in Fig. A.9c) for a fixed atomic position kcx0 = 1.15, and in
Fig. A.9d) we plot g(2)(0) as a function of trapping position x0 and
trap frequency ωm for ∆ = 10g0.
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Figure A.9: J-C model with motion expanding u(x) until quadratic order.
a) g(2)(0) of the transmitted field versus trapping position x0
and detuning from the empty cavity δc = ωL−ωc, for detun-
ings near the photonic eigenstate and by using the parameters
for a realistic cavity QED experiment given below. In this fig-
ure, we choose an atom-cavity detuning ∆ = 10g0 and atomic
trap frequency ωm = 2π× 0.09MHz, which produces the
minimum possible g(2)(0) including quadratic order correc-
tions. b) Following the ZPL of a) (red, dashed). W compare
g(2)(0) calculated with only linear displacements (red) in
Hamiltonian Eq. (4.2) of the main text with g(2)(0) calculated
by also including terms of quadratic order (blue). c) g(2)(0)
as a function of atom-cavity detuning ∆ and trapping fre-
quency ωm including terms of quadratic order. order. Here,
the atomic position is fixed at kcx0 = 1.15. d) g(2)(0) as a
function of trapping position x0 and trapping frequency ωm
for ∆ = 10g0 including terms of quadratic order. As in the
main text, we choose parameters of an existing cavity QED
experiment with trapped 40Ca+-ions: g0 = 2π × 1.4MHz,
κ = 2π× 0.05MHz, γ = 2π× 11MHz and recoil frequency
ωrec = 2π× 6.8 kHz.



B I B L I O G R A P H Y

1. Ashkin, A. Acceleration and trapping of particles by radia-
tion pressure. Physical review letters 24, 156 (1970).

2. Tsuda, Y et al. Flight status of IKAROS deep space solar sail
demonstrator. Acta Astronautica 69, 833–840 (2011).

3. Hänsch, T. W. & Schawlow, A. L. Cooling of gases by laser
radiation. Optics Communications 13, 68–69 (1975).

4. Ashkin, A. Optical trapping and manipulation of neutral
particles using lasers. Proceedings of the National Academy of
Sciences 94, 4853–4860 (1997).

5. Chan, J. J. Chan, TPM Alegre, AH Safavi-Naeini, JT Hill, A.
Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Nature
(London) 478, 89 (2011). Nature (London) 478, 89 (2011).

6. Teufel, J., Harlow, J., Regal, C. & Lehnert, K. Dynamical back-
action of microwave fields on a nanomechanical oscillator.
Physical review letters 101, 197203 (2008).

7. Law, C. Interaction between a moving mirror and radiation
pressure: A Hamiltonian formulation. Physical Review A 51,
2537 (1995).

8. Meenehan, S. M. et al. Silicon optomechanical crystal res-
onator at millikelvin temperatures. Physical Review A 90,
011803 (2014).

9. Pirkkalainen, J.-M. et al. Cavity optomechanics mediated by
a quantum two-level system. Nature communications 6, 6981

(2015).

10. Corbitt, T. et al. An all-optical trap for a gram-scale mirror.
Physical review letters 98, 150802 (2007).

11. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling
of a micromechanical resonator. Nature 444, 75 (2006).

12. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heid-
mann, A. Radiation-pressure cooling and optomechanical
instability of a micromirror. Nature 444, 71 (2006).

13. Gigan, S. et al. Self-cooling of a micromirror by radiation
pressure. Nature 444, 67 (2006).

105



106 bibliography

14. Thompson, J., Zwickl, B., Jayich, A., Marquardt, F., Girvin,
S. & Harris, J. Strong dispersive coupling of a high-finesse
cavity to a micromechanical membrane. Nature 452, 72 (2008).

15. Kippenberg, T., Rokhsari, H, Carmon, T, Scherer, A & Va-
hala, K. Analysis of radiation-pressure induced mechanical
oscillation of an optical microcavity. Physical Review Letters
95, 033901 (2005).

16. Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K. & Kip-
penberg, T. Radiation pressure cooling of a micromechanical
oscillator using dynamical backaction. Physical Review Letters
97, 243905 (2006).

17. Regal, C., Teufel, J. & Lehnert, K. Measuring nanomechan-
ical motion with a microwave cavity interferometer. Nature
Physics 4, 555 (2008).

18. Gavartin, E. et al. Optomechanical coupling in a two-dimensional
photonic crystal defect cavity. Physical review letters 106, 203902

(2011).

19. Kiesel, N., Blaser, F., Delić, U., Grass, D., Kaltenbaek, R.
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